#### Errata

Title & Document Type: 3563A Control Systems Analyzer Service Manual - Volume II

Manual Part Number: 03563-90006

Revision Date: April 1990

#### **HP References in this Manual**

This manual may contain references to HP or Hewlett-Packard. Please note that Hewlett-Packard's former test and measurement, semiconductor products and chemical analysis businesses are now part of Agilent Technologies. We have made no changes to this manual copy. The HP XXXX referred to in this document is now the Agilent XXXX. For example, model number HP8648A is now model number Agilent 8648A.

#### **About this Manual**

We've added this manual to the Agilent website in an effort to help you support your product. This manual provides the best information we could find. It may be incomplete or contain dated information, and the scan quality may not be ideal. If we find a better copy in the future, we will add it to the Agilent website.

#### **Support for Your Product**

Agilent no longer sells or supports this product. You will find any other available product information on the Agilent Test & Measurement website:

#### www.tm.agilent.com

Search for the model number of this product, and the resulting product page will guide you to any available information. Our service centers may be able to perform calibration if no repair parts are needed, but no other support from Agilent is available.



# HP 3563A Control Systems Analyzer

Volume II

Serial Number 2927A00100



HP Part Number 03563-90006 Microfiche Part Number 03563-90206

Printed in U.S.A.

Print Date: April 90

©Hewlett-Packard Company, 1990. All rights reserved. 8600 Soper Hill Road, Everett, WA 98205-1298



#### SAFETY SUMMARY

The following general safety precautions must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the instrument. Hewlett-Packard Company assumes no liability for the customer's failure to comply with these requirements. This is a Safety Class 1 instrument.

#### **GROUND THE INSTRUMENT**

To minimize shock hazard, the instrument chassis and cabinet must be connected to an electrical ground. The instrument is equipped with a three-conductor ac power cable. The power cable must either be plugged into an approved three-contact electrical outlet or used with a three-contact to two-contact adapter with the grounding wire (green) firmly connected to an electrical ground (safety ground) at the power outlet. The power jack and mating plug of the power cable meet International Electrotechnical Commission (IEC) safety standards.

#### DO NOT OPERATE IN AN EXPLOSIVE ATMOSPHERE

Do not operate the instrument in the presence of flammable gases or fumes. Operation of any electrical instrument in such an environment constitutes a definite safety hazard.

#### **KEEP AWAY FROM LIVE CIRCUITS**

Operating personnel must not remove instrument covers. Component replacement and internal adjustments must be made by qualified maintenance personnel. Do not replace components with power cable connected. Under certain conditions, dangerous voltages may exist even with the power cable removed. To avoid injuries, always disconnect power and discharge circuits before touching them.

#### DO NOT SERVICE OR ADJUST ALONE

Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present.

#### DO NOT SUBSTITUTE PARTS OR MODIFY INSTRUMENT

Because of the danger of introducing additional hazards, do not install substitute parts or perform any unauthorized modification to the instrument. Return the instrument to a Hewlett-Packard Sales and Service Office for service and repair to ensure the safety features are maintained.

#### **DANGEROUS PROCEDURE WARNINGS**

Warnings, such as the example below, precede potentially dangerous procedures throughout this manual. Instructions contained in the warnings must be followed.

Warning



Dangerous voltages, capable of causing death, are present in this instrument. Use extreme caution when handling, testing, and adjusting.



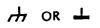
#### **SAFETY SYMBOLS**

General Definitions of Safety Symbols Used On Equipment or In Manuals.

Δ

Instruction manual symbol: the product will be marked with this symbol when it is necessary for the user to refer to the instruction manual in order to protect against damage to the instrument.

4


Indicates dangerous voltage (terminals fed from the interior by voltage exceeding 1000 volts must be so marked.)

± OR (±)

Protective conductor terminal. For protection against electrical shock in case of a fault. Used with field wiring terminals to indicate the terminal which must be connected to ground before operating equipment.



Low-noise or noiseless, clean ground (earth) terminal. Used for a signal common, as well as providing protection against electrical shock in case of a fault. A terminal marked with this symbol must be connected to ground in the manner described in the installation (operating) manual, and before operating the equipment.



Frame or chassis terminal. A connection to the frame (chassis) of the equipment which normally includes all exposed metal structures.



Alternating current (power line.)

\_\_\_

Direct current (power line.)



Alternating or direct current (power line.)

#### Warning



The WARNING sign denotes a hazard. It calls attention to a procedure, practice, condition or the like, which if not correctly performed or adhered to, could result in injury or death to personnel.

#### Caution



The CAUTION sign denotes a hazard. It calls attention to an operating procedure, practice, condition or the like, which, if not correctly performed or adhered to, could result in damage to or destruction of part or all of the product.

#### Note



The NOTE sign denotes important information. It calls attention to procedure, practice, condition or the like, which is essential to highlight.

# **Table of Contents**

| Secti | on I: General information                                               |            |
|-------|-------------------------------------------------------------------------|------------|
|       | How This Manual is Organized                                            | 1-1        |
|       | Safety Considerations                                                   |            |
|       | Recommended Test Equipment                                              | 1-3        |
| Secti | ion II: Installation Guide/Display Operation Verification/Specification |            |
|       | HP 3563A Installation Guide                                             |            |
|       | HP Digital Display                                                      | 2-1        |
|       | Description                                                             | 2-1<br>2-1 |
|       | Operation Verification                                                  | 2-3        |
| Sect  | ion III: Adjustments                                                    |            |
|       | Introduction                                                            | 3-1        |
|       | Equipment Required                                                      |            |
|       | Key Conventions                                                         |            |
|       | Safety Considerations                                                   | 3-3        |
|       | Power Supply                                                            | 3-4        |
|       | 20.48 MHz Reference                                                     | 3-6        |
|       | Second Pass Gain                                                        | 3-8        |
|       | ADC Offset and Reference                                                |            |
|       | Track and Hold Offset                                                   |            |
|       | Input DC Offset                                                         |            |
|       | Input Attenuators                                                       |            |
|       | Source DC Offset                                                        |            |
|       | Calibrator Gain                                                         |            |
|       | HP Digital Display Adjustments                                          |            |
|       | Safety Considerations                                                   |            |
|       | Removing the HP Digital Display                                         | 3-3        |
|       | Low Voltage Power Supply Adjustments                                    | 3-3        |
|       | High Voltage Power Supply Adjustments                                   |            |
|       | Pattern Adjustments                                                     | 3-4        |
|       | Stroke Generator Adjustments                                            | 3-4        |

|       | Stroke Intensity Adjustments                                   |    |
|-------|----------------------------------------------------------------|----|
|       | Final Focus Adjustments                                        | 53 |
|       | Auxiliary X-Y-Z Output Check                                   | 58 |
| Sect  | on IV: Replaceable Parts                                       |    |
|       | Introduction                                                   | 1  |
|       | Replaceable Parts                                              |    |
|       | Ordering Information                                           |    |
|       | Ordering Assemblies                                            |    |
|       | Ordering Listed Parts                                          | 4  |
|       | Ordering Non-listed Parts                                      |    |
|       | Direct Mail Order System                                       |    |
|       | Replaceable Parts for the HP Digital Display4-                 | 64 |
| Secti | on V: Manual Backdating                                        |    |
|       | Introduction                                                   | 1  |
|       | Manual Changes Supplement                                      | 1  |
|       | Format                                                         |    |
|       | A2 CPU                                                         |    |
|       | Digital Display                                                |    |
| Secti | on VI: Circuit Description                                     |    |
| occ.  | Introduction                                                   | 1  |
|       |                                                                |    |
|       | Overall Instrument Description                                 |    |
|       | A1 Digital Source                                              |    |
|       | Interface to the System CPU                                    |    |
|       | Timing Control                                                 |    |
|       | Phase Resolution Circuit                                       |    |
|       | Burst Control Circuit                                          |    |
|       | LO Input Receiver                                              |    |
|       | Multiplier                                                     |    |
|       | Noise Generator                                                |    |
|       | A2 System CPU/HP-IB                                            |    |
|       | Off-Board Operations                                           |    |
|       | On-Board Memory Operations                                     |    |
|       | Interaction Between the A2 System CPU and the A38 Global RAM6- |    |
|       | Interrupt Circuit                                              | 22 |
|       | Programmable Timer Module                                      |    |
|       | Bus Time Out                                                   |    |
|       | Status Decoder                                                 | 23 |

| 44 Local Oscillator                              |
|--------------------------------------------------|
| Theory of Operation                              |
| System Bus Interface                             |
| Phase Accumulator                                |
| Sine ROM (U29, U20)                              |
| Interpolator and Adder                           |
| Output Buffers                                   |
| Control Circuits                                 |
|                                                  |
| A5, Digital Filter/A6, Digital Filter Controller |
| Data Flow                                        |
| A5, Digital Filter Block Descriptions            |
| A6, Digital Filter Controller Block Descriptions |
| A7 Floating Point Processor                      |
| System Address Decoder and Handshake             |
| Sequencer (U103)                                 |
| Global Bus Interface                             |
| Arithmetic Logic Units (ALUs)                    |
|                                                  |
| A9 Fast Fourier Transform (FFT) Processor6-48    |
| FFT Interaction with the CPU6-48                 |
| FFT Microprocessor System                        |
| Port Decoder                                     |
| Hardware Control Register                        |
| Address Generation                               |
| Bus Interface                                    |
| Pseudo-Scale ROM                                 |
| Butterfly Subroutine Address ROM                 |
| Test Bit Mux                                     |
| Pseudorandom Number Generator                    |
| LED Register                                     |
| Internal Signal Descriptions                     |
|                                                  |
| A10 Digital I/O                                  |
| Trigger Control and Clock                        |
| Theory of Operation                              |
| A15 Keyboard                                     |
| LED Indicators                                   |
| Front Panel Key Pressed                          |
| Rotational Pulse Generators                      |
| A18 Power Supply                                 |
| Theory of Operation                              |
| Turn On                                          |
|                                                  |
| Primary Rectifier and RC Filter                  |
| Bias Power Supply                                |
| Pulse Width Modulator                            |
| Protection Circuits                              |

| A30 Analog Source                            |            |
|----------------------------------------------|------------|
| Sine Wave Interface                          |            |
| Source Signal DAC                            | O .        |
| 100 kHz LPF                                  |            |
| Attenuator                                   |            |
| Summer/Driver                                |            |
| Front End Interface                          |            |
| Offset Switch                                |            |
| Overload Protection                          |            |
| Calibrator Introduction                      |            |
| Square Wave Source                           |            |
| Pseudo Random Source                         |            |
| Signal Selection                             |            |
| Calibrator                                   | 72         |
| A31 Trigger                                  |            |
| Trigger Level Circuit                        | 73         |
| Trigger Control                              |            |
| Trigger Clock Circuit                        |            |
| Switchable Low Pass Filter                   |            |
| (Q201, R214, C207, C208)                     | <i>7</i> 5 |
| A32, A34 Analog-to-Digital Converters        |            |
| Analog                                       | 77         |
| 6.2V Reference Voltage                       |            |
| Offset D/A Converter                         |            |
| Over Range/Half Range Circuit                | 32         |
| Missed Sample Circuit                        | 32         |
| Diagnostic Tester                            |            |
| Master/Slave Selection                       | 32         |
| A33, A35 INPUT                               | 35         |
| Attenuators and Buffers                      |            |
| Input Overload Detector                      |            |
| Common Mode Rejection DAC                    | 36         |
| A38, Program ROM/Global RAM/Display Control  |            |
| A17, Display Interface                       |            |
| Program ROM                                  | )1         |
| Global Ram/Display Control Display Interface |            |
| HP Digital Display Circuit Descriptions      |            |
| A82 Vector Processor Control Board           | 18         |
| A81 Stroke Generator,                        |            |
| X-Y Output Amplifiers                        |            |
| X-Y Amplifiers                               |            |
| Z-Axis Intensity Amplifier                   |            |
| Focus Amplifier                              |            |
| A84 Memory Circuit Option Assembly           |            |
| Memory Control                               |            |
| •                                            |            |
| Signal Descriptions                          |            |
| Digital Display Signal Descriptions          | L30        |

#### **Section VII: Fault Isolation**

| Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7-1                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Fault Isolation Procedures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                              |
| Troubleshooting Hints                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7-3                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                              |
| Key Conventions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                              |
| Logic Conventions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                              |
| Safety Considerations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                              |
| Initial Conditions Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7-7                                                                                                                                          |
| Power Supply Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7-7                                                                                                                                          |
| Keyboard Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7-8                                                                                                                                          |
| Display Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7-9                                                                                                                                          |
| Clock Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                              |
| Power-Up Tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7-11                                                                                                                                         |
| Power-Up Test Procedure ONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7-11                                                                                                                                         |
| Power-Up Test Procedure TWO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7-13                                                                                                                                         |
| Power-Up Test Procedure THREE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                              |
| Test All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7-22                                                                                                                                         |
| Test All Procedure ONE - Test All Start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7-23                                                                                                                                         |
| Test All Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7-25                                                                                                                                         |
| Test All Procedure TWO - Test All Does Not Complete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                              |
| Isolating Front End Failures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7-31                                                                                                                                         |
| Isolating Front End Failures Procedure ONE - Signal Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                              |
| Isolating Front End Failures Procedure TWO - LO and Digital Source Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7-34                                                                                                                                         |
| Isolating Front End Failures Procedure THREE - Digital Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                              |
| Isolating Front End Failures Procedure FOUR - Output Sine Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7-37                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                              |
| Isolation Front End Failures Procedure FIVE - Input, ADC, and Digital I/O Failures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7-38                                                                                                                                         |
| Isolation Front End Failures Procedure FIVE - Input, ADC, and Digital I/O Failures Isolating Front End Failures Procedure SIX - SYNC2 Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7-38<br>7-40                                                                                                                                 |
| Isolation Front End Failures Procedure FIVE - Input, ADC, and Digital I/O Failures  Isolating Front End Failures Procedure SIX - SYNC2 Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7-38<br>7-40<br>7-42                                                                                                                         |
| Isolation Front End Failures Procedure FIVE - Input, ADC, and Digital I/O Failures Isolating Front End Failures Procedure SIX - SYNC2 Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7-38<br>7-40<br>7-42<br>7-42                                                                                                                 |
| Isolation Front End Failures Procedure FIVE - Input, ADC, and Digital I/O Failures Isolating Front End Failures Procedure SIX - SYNC2 Test  Source Failures  Source Failures Procedure ONE - Source Failures Start  Source Failures Procedure TWO - Source Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7-38<br>7-40<br>7-42<br>7-44                                                                                                                 |
| Isolation Front End Failures Procedure FIVE - Input, ADC, and Digital I/O Failures Isolating Front End Failures Procedure SIX - SYNC2 Test  Source Failures  Source Failures Procedure ONE - Source Failures Start  Source Failures Procedure TWO - Source Data  Source Failures Procedure THREE - Burst Failures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7-38<br>7-40<br>7-42<br>7-42<br>7-44                                                                                                         |
| Isolation Front End Failures Procedure FIVE - Input, ADC, and Digital I/O Failures Isolating Front End Failures Procedure SIX - SYNC2 Test  Source Failures  Source Failures Procedure ONE - Source Failures Start  Source Failures Procedure TWO - Source Data  Source Failures Procedure THREE - Burst Failures  Digital Input Failures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7-38<br>7-40<br>7-42<br>7-44<br>7-45<br>7-47                                                                                                 |
| Isolation Front End Failures Procedure FIVE - Input, ADC, and Digital I/O Failures Isolating Front End Failures Procedure SIX - SYNC2 Test  Source Failures  Source Failures Procedure ONE - Source Failures Start  Source Failures Procedure TWO - Source Data  Source Failures Procedure THREE - Burst Failures  Digital Input Failures  Digital I/O Test Setup Procedure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7-38<br>7-40<br>7-42<br>7-44<br>7-45<br>7-47                                                                                                 |
| Isolation Front End Failures Procedure FIVE - Input, ADC, and Digital I/O Failures Isolating Front End Failures Procedure SIX - SYNC2 Test  Source Failures Source Failures Procedure ONE - Source Failures Start Source Failures Procedure TWO - Source Data Source Failures Procedure THREE - Burst Failures  Digital Input Failures Digital I/O Test Setup Procedure Arbitrary Self-Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7-38<br>7-40<br>7-42<br>7-44<br>7-45<br>7-47<br>7-49                                                                                         |
| Isolation Front End Failures Procedure FIVE - Input, ADC, and Digital I/O Failures Isolating Front End Failures Procedure SIX - SYNC2 Test  Source Failures  Source Failures Procedure ONE - Source Failures Start  Source Failures Procedure TWO - Source Data  Source Failures Procedure THREE - Burst Failures  Digital Input Failures  Digital I/O Test Setup Procedure  Arbitrary Self-Test  Input and Qualifier Self-Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7-38<br>7-40<br>7-42<br>7-44<br>7-45<br>7-48<br>7-49                                                                                         |
| Isolation Front End Failures Procedure FIVE - Input, ADC, and Digital I/O Failures Isolating Front End Failures Procedure SIX - SYNC2 Test  Source Failures  Source Failures Procedure ONE - Source Failures Start  Source Failures Procedure TWO - Source Data  Source Failures Procedure THREE - Burst Failures  Digital Input Failures  Digital I/O Test Setup Procedure  Arbitrary Self-Test  Input and Qualifier Self-Test  Digital I/O Manual Isolation Tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7-38<br>7-40<br>7-42<br>7-45<br>7-45<br>7-49<br>7-49<br>7-51                                                                                 |
| Isolation Front End Failures Procedure FIVE - Input, ADC, and Digital I/O Failures Isolating Front End Failures Procedure SIX - SYNC2 Test  Source Failures  Source Failures Procedure ONE - Source Failures Start  Source Failures Procedure TWO - Source Data  Source Failures Procedure THREE - Burst Failures  Digital Input Failures  Digital I/O Test Setup Procedure  Arbitrary Self-Test  Input and Qualifier Self-Test  Digital I/O Manual Isolation Tests  Input/Output Cable Connections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7-38<br>7-40<br>7-42<br>7-44<br>7-45<br>7-49<br>7-49<br>7-51<br>7-57                                                                         |
| Isolation Front End Failures Procedure FIVE - Input, ADC, and Digital I/O Failures Isolating Front End Failures Procedure SIX - SYNC2 Test  Source Failures Source Failures Procedure ONE - Source Failures Start Source Failures Procedure TWO - Source Data Source Failures Procedure THREE - Burst Failures  Digital Input Failures Digital I/O Test Setup Procedure Arbitrary Self-Test Input and Qualifier Self-Test Digital I/O Manual Isolation Tests Input/Output Cable Connections  Control Line Tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7-38<br>7-40<br>7-42<br>7-44<br>7-45<br>7-49<br>7-51<br>7-51                                                                                 |
| Isolation Front End Failures Procedure FIVE - Input, ADC, and Digital I/O Failures Isolating Front End Failures Procedure SIX - SYNC2 Test  Source Failures Source Failures Procedure ONE - Source Failures Start Source Failures Procedure TWO - Source Data Source Failures Procedure THREE - Burst Failures  Digital Input Failures Digital I/O Test Setup Procedure Arbitrary Self-Test Input and Qualifier Self-Test Digital I/O Manual Isolation Tests Input/Output Cable Connections  Control Line Tests Control Line Test ONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7-38<br>7-40<br>7-42<br>7-44<br>7-45<br>7-49<br>7-51<br>7-57<br>7-61                                                                         |
| Isolation Front End Failures Procedure FIVE - Input, ADC, and Digital I/O Failures Isolating Front End Failures Procedure SIX - SYNC2 Test  Source Failures Source Failures Procedure ONE - Source Failures Start Source Failures Procedure TWO - Source Data Source Failures Procedure THREE - Burst Failures  Digital Input Failures Digital I/O Test Setup Procedure Arbitrary Self-Test Input and Qualifier Self-Test Digital I/O Manual Isolation Tests Input/Output Cable Connections  Control Line Tests Control Line Test ONE Control Line Test TWO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7-38<br>7-40<br>7-42<br>7-45<br>7-45<br>7-49<br>7-49<br>7-51<br>7-61<br>7-61                                                                 |
| Isolation Front End Failures Procedure FIVE - Input, ADC, and Digital I/O Failures Isolating Front End Failures Procedure SIX - SYNC2 Test  Source Failures Source Failures Procedure ONE - Source Failures Start Source Failures Procedure TWO - Source Data Source Failures Procedure THREE - Burst Failures  Digital Input Failures Digital I/O Test Setup Procedure Arbitrary Self-Test Input and Qualifier Self-Test Digital I/O Manual Isolation Tests Input/Output Cable Connections  Control Line Tests Control Line Test TWO Control Line Test THREE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7-38<br>7-40<br>7-42<br>7-44<br>7-45<br>7-49<br>7-51<br>7-51<br>7-61<br>7-62<br>7-63                                                         |
| Isolation Front End Failures Procedure FIVE - Input, ADC, and Digital I/O Failures Isolating Front End Failures Procedure SIX - SYNC2 Test  Source Failures Source Failures Procedure ONE - Source Failures Start Source Failures Procedure TWO - Source Data Source Failures Procedure THREE - Burst Failures  Digital Input Failures Digital I/O Test Setup Procedure Arbitrary Self-Test Input and Qualifier Self-Test Digital I/O Manual Isolation Tests Input/Output Cable Connections  Control Line Test ONE Control Line Test TWO Control Line Test THREE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7-38<br>7-40<br>7-42<br>7-44<br>7-45<br>7-49<br>7-51<br>7-51<br>7-61<br>7-62<br>7-63                                                         |
| Isolation Front End Failures Procedure FIVE - Input, ADC, and Digital I/O Failures Isolating Front End Failures Procedure SIX - SYNC2 Test  Source Failures  Source Failures Procedure ONE - Source Failures Start  Source Failures Procedure TWO - Source Data  Source Failures Procedure THREE - Burst Failures  Digital Input Failures  Digital I/O Test Setup Procedure  Arbitrary Self-Test  Input and Qualifier Self-Test  Digital I/O Manual Isolation Tests  Input/Output Cable Connections  Control Line Tests  Control Line Test ONE  Control Line Test TWO  Control Line Test THREE  Isolating Trigger Failures  Isolating Trigger Failures Procedure ONE — Start                                                                                                                                                                                                                                                                                                                                                                                      | 7-38<br>7-40<br>7-42<br>7-44<br>7-45<br>7-49<br>7-51<br>7-51<br>7-61<br>7-63<br>7-64<br>7-64                                                 |
| Isolation Front End Failures Procedure FIVE - Input, ADC, and Digital I/O Failures Isolating Front End Failures Procedure SIX - SYNC2 Test  Source Failures Source Failures Procedure ONE - Source Failures Start Source Failures Procedure TWO - Source Data Source Failures Procedure THREE - Burst Failures  Digital Input Failures Digital I/O Test Setup Procedure Arbitrary Self-Test Input and Qualifier Self-Test Digital I/O Manual Isolation Tests Input/Output Cable Connections  Control Line Test ONE Control Line Test TWO Control Line Test THREE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7-38<br>7-40<br>7-42<br>7-44<br>7-45<br>7-49<br>7-51<br>7-51<br>7-61<br>7-63<br>7-64<br>7-64<br>7-65                                         |
| Isolation Front End Failures Procedure FIVE - Input, ADC, and Digital I/O Failures Isolating Front End Failures Procedure SIX - SYNC2 Test  Source Failures Source Failures Procedure ONE - Source Failures Start Source Failures Procedure TWO - Source Data Source Failures Procedure THREE - Burst Failures  Digital Input Failures Digital I/O Test Setup Procedure Arbitrary Self-Test Input and Qualifier Self-Test Digital I/O Manual Isolation Tests Input/Output Cable Connections  Control Line Tests Control Line Test ONE Control Line Test TWO Control Line Test THREE  Isolating Trigger Failures Isolating Trigger Failures Procedure ONE — Start Isolating Trigger Failures Procedure TWO Isolating Trigger Failures Procedure THREE Isolating Trigger Failures Procedure THREE Isolating Trigger Failures Procedure THREE                                                                                                                                                                                                                        | 7-38<br>7-40<br>7-42<br>7-44<br>7-45<br>7-49<br>7-49<br>7-51<br>7-61<br>7-61<br>7-62<br>7-64<br>7-64<br>7-65<br>7-65                         |
| Isolation Front End Failures Procedure FIVE - Input, ADC, and Digital I/O Failures Isolating Front End Failures Procedure SIX - SYNC2 Test  Source Failures Source Failures Procedure ONE - Source Failures Start Source Failures Procedure TWO - Source Data Source Failures Procedure THREE - Burst Failures  Digital Input Failures  Digital I/O Test Setup Procedure Arbitrary Self-Test Input and Qualifier Self-Test Digital I/O Manual Isolation Tests Input/Output Cable Connections  Control Line Tests Control Line Test ONE Control Line Test TWO Control Line Test THREE  Isolating Trigger Failures Isolating Trigger Failures Procedure ONE — Start Isolating Trigger Failures Procedure THREE Isolating Trigger Failures Procedure FOUR Isolating Trigger Failures Procedure FOUR Isolating Trigger Failures Procedure FOUR                                                                                       | 7-38<br>7-40<br>7-42<br>7-44<br>7-45<br>7-47<br>7-49<br>7-51<br>7-51<br>7-61<br>7-62<br>7-63<br>7-64<br>7-65<br>7-65<br>7-65                 |
| Isolation Front End Failures Procedure FIVE - Input, ADC, and Digital I/O Failures Isolating Front End Failures Procedure SIX - SYNC2 Test  Source Failures Source Failures Procedure ONE - Source Failures Start Source Failures Procedure TWO - Source Data Source Failures Procedure THREE - Burst Failures  Digital Input Failures  Digital I/O Test Setup Procedure Arbitrary Self-Test Input and Qualifier Self-Test Digital I/O Manual Isolation Tests Input/Output Cable Connections  Control Line Tests Control Line Test ONE Control Line Test TWO Control Line Test THREE  Isolating Trigger Failures Isolating Trigger Failures Procedure ONE — Start Isolating Trigger Failures Procedure THREE Isolating Trigger Failures Procedure FOUR Isolating Trigger Failures Procedure FIVE Isolating Trigger Failures Procedure FIVE | 7-38<br>7-40<br>7-42<br>7-44<br>7-45<br>7-47<br>7-49<br>7-51<br>7-51<br>7-61<br>7-63<br>7-63<br>7-64<br>7-65<br>7-66<br>7-66<br>7-68<br>7-69 |
| Isolation Front End Failures Procedure FIVE - Input, ADC, and Digital I/O Failures Isolating Front End Failures Procedure SIX - SYNC2 Test  Source Failures Source Failures Procedure ONE - Source Failures Start Source Failures Procedure TWO - Source Data Source Failures Procedure THREE - Burst Failures  Digital Input Failures  Digital I/O Test Setup Procedure Arbitrary Self-Test Input and Qualifier Self-Test Digital I/O Manual Isolation Tests Input/Output Cable Connections  Control Line Tests Control Line Test ONE Control Line Test TWO Control Line Test THREE  Isolating Trigger Failures Isolating Trigger Failures Procedure ONE — Start Isolating Trigger Failures Procedure THREE Isolating Trigger Failures Procedure FOUR Isolating Trigger Failures Procedure FOUR Isolating Trigger Failures Procedure FOUR                                                                                       | 7-38<br>7-40<br>7-42<br>7-44<br>7-45<br>7-49<br>7-51<br>7-51<br>7-61<br>7-63<br>7-64<br>7-65<br>7-66<br>7-66<br>7-66<br>7-66<br>7-69         |

|      | Turning Loop Mode On/Off                          |          |
|------|---------------------------------------------------|----------|
|      | Waveforms                                         |          |
|      |                                                   |          |
|      | SPCL FCTN Key Map                                 |          |
|      | Test Log and Fault Log Descriptions               |          |
|      | Test Log                                          |          |
|      | Fault Log                                         |          |
| ,    | Diagnostic Descriptions                           |          |
|      | Power-Up Tests                                    |          |
|      | Service Test Softkeys                             |          |
| ;    | Self-Calibration                                  |          |
|      | Displaying Calibration Curves                     |          |
|      | Calibration Failures                              | l01      |
| •    | Froubleshooting the Auto-Range Circuits           |          |
|      | Symptoms                                          | 103      |
|      | Auto-Range Failure Tests                          |          |
|      | Auto-Range Failure Test ONE                       |          |
|      | Auto-Range Failure Test TWO                       |          |
|      | Auto-Range Failure Test THREE                     | 106      |
| C4!- | . 1711. C                                         |          |
|      | n VIII: Service                                   |          |
|      | How to Use This Section                           |          |
| (    | General Schematic Notes                           | 5        |
|      | A1 Digital Source                                 |          |
|      | Digital Source Diagnostics                        |          |
|      | Subblock Verification Tests                       |          |
|      | Multiple Failures Test                            |          |
|      | Effective Sample Rate Generator Test8-2           |          |
|      | Digital Source Signature Analysis Tests           |          |
|      | Digital Source After-Repair Adjustments and Tests | )4<br>10 |
|      | A1 Schematic                                      | ю        |
|      | A2, A22 System CPU/HP-IB                          | 20       |
| •    | CPU/HP-IB Initial Conditions Test                 |          |
|      | System CPU Diagnostics                            | 12<br>13 |
|      | CPU Global Bus Interface Test                     | 15<br>15 |
|      | HP-IB Test                                        |          |
|      | Nonvolatile RAM Test8-4                           | 17       |
|      | CPU Signature Analysis Tests                      | 17       |
|      | CPU Signal Waveforms                              | 0        |
|      | CPU/HP-IB After-Repair Adjustments and Tests      | 52       |
|      | A2, A22 Schematic                                 |          |
|      | A9 Fast Fourier Transform (FFT) Processor8-5      |          |
|      | FFT Diagnostics                                   | 55       |
|      | FFT Signature Analysis Tests                      |          |
|      | FFT Signal Waveforms                              | 0        |
|      | FFT After-Repair Adjustments and Tests8-7         | 2        |
|      | A9 Schematic                                      |          |
| 1    | 14 Mother Board                                   | 7        |

|   | A15 Keyboard                                      |
|---|---------------------------------------------------|
|   | Key Check Test                                    |
|   | Disconnecting W10                                 |
|   | LEDs Test                                         |
|   | RPG Test                                          |
|   | Removing the Keyboard8-92                         |
|   | Keyboard Signature Analysis Tests                 |
|   | Keyboard After-Repair Adjustments and Tests       |
|   | A15 Schematic                                     |
|   | A18 Power Supply Assembly                         |
|   | Bias Supply Test                                  |
|   | Primary Fault Test                                |
|   | Primary Circuit Test                              |
|   | Control Loop Test                                 |
|   | Slow Start Test                                   |
| • | Secondary Supplies Test                           |
|   | Over Temperature Circuit Test                     |
|   | Power Supply Signal Waveforms                     |
|   | Power Supply After-Repair Adjustments and Tests   |
|   | A18 Schematic                                     |
|   | A30 Analog Source                                 |
|   | Sine Wave Circuitry Test                          |
|   | DC Offset Test                                    |
|   | Calibration Circuits Test                         |
|   | Overload Detection Circuit Tests                  |
|   | Waveform and Spectrum Plots                       |
|   | Analog Source After-Repair Adjustments and Tests  |
|   | A30 Schematic                                     |
|   | A31 Trigger                                       |
|   | VCXO Test                                         |
|   | Trigger Test                                      |
|   | REF IN Test                                       |
|   | Trigger Assembly Waveforms8-142                   |
|   | Trigger After-Repair Adjustments and Tests        |
|   | A31 Schematic                                     |
|   | A32, A34 Analog-to-Digital Converter (ADC)8-149   |
|   | Signal Amplitudes vs Selected Range Test          |
|   | No Signal Through The Main Data Path8-155         |
|   | Distortion                                        |
|   | Won't Trigger Off Individual Channel(s)           |
|   | Over Range and Half Scale Sensing Problems8-158   |
|   | Offset D/A Converter                              |
|   | ADC After-Repair Adjustments and Tests8-158       |
|   | A32, A34 Schematic                                |
|   | A33, A35 Input                                    |
|   | Signal Amplitudes Versus Range Setting Test       |
|   | Range Setting vs. Attenuator Setting              |
|   | Input Assembly Waveforms                          |
|   | Input Assembly After-Repair Adjustments and Tests |
|   | A33. A35 Schematic                                |

| HP Digital Display                   |
|--------------------------------------|
| Preventive Maintenance               |
| How to Use This Section              |
| HP Digital Display                   |
| A82 Vector Processor                 |
| A81 X-Y-Z Amplifier/Stroke Generator |
| A83 Low Voltage Power Supply         |
| A80 High Voltage Power Supply        |
| A84 Memory                           |
| Symbols and Labels                   |
| HP Digital Display Schematics        |

# **Table of Contents**

| Sect | tion VII: Fault Isolation                                                          |                    |
|------|------------------------------------------------------------------------------------|--------------------|
|      | Introduction                                                                       | 7-1                |
|      | Fault Isolation Procedures                                                         |                    |
|      | Troubleshooting Hints                                                              |                    |
|      | Key Conventions                                                                    |                    |
|      | Logic Conventions                                                                  |                    |
|      | Safety Considerations                                                              | 7-6                |
|      | Initial Conditions Test                                                            |                    |
|      | Power Supply Check                                                                 |                    |
|      | Keyboard Check                                                                     |                    |
|      | Display Check                                                                      |                    |
|      | Clock Check                                                                        |                    |
|      | Power-Up Tests                                                                     |                    |
|      | Power-Up Test Procedure ONE                                                        |                    |
|      | Power-Up Test Procedure TWO                                                        |                    |
|      | Test All                                                                           |                    |
|      | Test All Procedure ONE - Test All Start                                            |                    |
|      | Test All Table                                                                     |                    |
|      | Test All Procedure TWO - Test All Does Not Complete                                |                    |
|      | Isolating Front End Failures                                                       |                    |
|      | Isolating Front End Failures Procedure ONE - Signal Check                          | 7-32               |
|      | Isolating Front End Failures Procedure TWO - LO and Digital Source Check           | 7-34               |
|      | Isolating Front End Failures Procedure THREE - Digital Check                       | 7-35               |
|      | Isolating Front End Failures Procedure FOUR - Output Sine Check                    | 7-37               |
|      | Isolation Front End Failures Procedure FIVE - Input, ADC, and Digital I/O Failures | 7-38               |
|      | Isolating Front End Failures Procedure SIX - SYNC2 Test                            |                    |
|      | Source Failures                                                                    |                    |
|      | Source Failures Procedure ONE - Source Failures Start                              |                    |
|      | Source Failures Procedure TWO - Source Data                                        | . 1- <del>44</del> |
|      |                                                                                    |                    |
|      | Digital Input Failures                                                             |                    |
|      | Arbitrary Self-Test                                                                |                    |
|      | Input and Qualifier Self-Test                                                      | 7-49               |
|      | Digital I/O Manual Isolation Tests                                                 | 7-51               |
|      | Input/Output Cable Connections                                                     |                    |
|      | Control Line Tests                                                                 | 7-61               |
|      | Control Line Test ONE                                                              |                    |
|      | Control Line Test TWO                                                              |                    |
|      | Control I in a West TUDER                                                          |                    |

| Isolating Trigger Failures                       |
|--------------------------------------------------|
| Isolating Trigger Failures Procedure ONE - Start |
| Isolating Trigger Failures Procedure TWO         |
| Isolating Trigger Failures Procedure THREE       |
| Isolating Trigger Failures Procedure FOUR        |
| Isolating Trigger Failures Procedure FIVE        |
| Isolating Trigger Failures Procedure SIX         |
| Isolating Trigger Failures Procedure SEVEN       |
| Isolating Trigger Failures Procedure EIGHT       |
| Loop Mode and Intermittent Failures              |
| Turning Loop Mode On/Off                         |
| Waveforms                                        |
| SPCL FCTN Key Map                                |
| Test Log and Fault Log Descriptions              |
| Test Log                                         |
| Fault Log                                        |
| Diagnostic Descriptions                          |
| Power-Up Tests                                   |
| Service Test Softkeys                            |
| Self-Calibration                                 |
| Displaying Calibration Curves                    |
| Calibration Failures                             |
| Troubleshooting the Auto-Range Circuits          |
| Symptoms                                         |
| Auto-Range Failure Tests                         |
| Auto-Range Failure Test ONE                      |
| Auto-Range Failure Test TWO                      |
| Auto-Range Failure Test THREE                    |
|                                                  |

.

## **Section VII**

### **Fault Isolation**

#### Introduction

This section contains the information required to isolate failures to the circuit board level. To accomplish this, extensive use is made of the power-up tests and the self-tests. After isolating the failure to an assembly go to Section VIII, "Service" to continue the failure isolation process.

The fault isolation procedure assumes only one independent failure. Multiple failures may cause false results in the diagnostic tests.

#### **Fault Isolation Procedures**

#### Start

Use table 7-1 to determine which troubleshooting procedure to begin with.

Table 7-1. Assembly Level Troubleshooting Guide

| Symptom                                                                                                                                         | Troubleshooting Procedure                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Screen Blank Screen defective After power-on, > 3 min before keys active No response when key is pressed Incorrect response when key is pressed | "Initial Conditions Test"<br>Section VII             |
| "MONITOR TEST LOG" or<br>"PROGRAM ROM DEAD"<br>is displayed on power-up.                                                                        | "Power-Up Tests"<br>Section VII                      |
| Calibration fails Performance test fails                                                                                                        | "Test All"<br>Section VII                            |
| Digital Inputs fails                                                                                                                            | "Digital Input Failures"<br>Section VII              |
| Trigger fails                                                                                                                                   | "Isolating Trigger Failures" Section VII             |
| HP-IB fails                                                                                                                                     | "A2, A22 System CPU/HP-IB"<br>Section VIII           |
| Intermittent failure                                                                                                                            | "Loop Mode and Intermittent Failures"<br>Section VII |

#### Reference

For component locators and schematics refer to Section VIII.

For the location of cables and boards refer to figure 4-1 in Section IV.

To find a particular softkey refer to "SPCL FCTN Key Map".

To find the software revision code, refer to "Test Log and Fault Log Descriptions" in this section.

To understand the self-diagnostic process, refer to "Diagnostic Descriptions" in this section.

To understand the self-calibration process, refer to "Self-Calibration" in this section.

To understand the instrument's operation and signal mnemonics refer to Section VI.

#### Verify

Use the oscilloscope waveforms in the "Waveforms" passage of this section to verify correct operation at various test points in the instrument.

#### **Troubleshooting Hints**

- 1. Intermittent cables can cause hardware failures.
- 2. Noise or spikes on power supplies can cause instrument failure.
- 3. Incorrect bias supply voltages can cause false diagnostic messages.
- 4. Use front panel diagnostics to isolate the problem before extensive troubleshooting.
- 5. It is possible that one circuit board can load another circuit board causing the wrong one to appear to be defective. This applies to both analog and digital signals.
- 6. Whenever possible, divide the circuit under test in half (half-splitting).
- 7. If the name of a nonnumerical key or "ENTRY Not Enabled" appears in the lower left of the display immediately after the power-up routine, there may be a stuck key or shorted trace on the keyboard (go to "A15 Keyboard" in Section VIII).
- 8. Do not remove any assembly from the instrument with the power on. There are several sensitive components in the instrument that may be damaged by power supply glitches.
- 9. To stop the instrument calibration, press softkey S8 (the last softkey) just after the display appears. Note: TEST ALL and SELF TEST may not be valid if this key is pressed before these tests are done.
- 10. A14 Mother Board failures are not isolated in this section. If the mother board is suspected of failing, refer to the "A14 Mother Board" discussion in Section VIII.
- 11. Measurements in this section are only approximate (usually ± 1 dB or 10%) unless stated otherwise.
- 12. The calibrator can be activated by performing the steps listed in the "Calibration Circuits Test" under "A30 Analog Source" in Section VIII. This allows the calibrator signals to be traced through the analog circuits. Using this technique, the calibrator can also be verified without the input assemblies.
- 13. If the instrument does not make a correct measurement but the self-tests pass, the instrument may need adjustment (refer to Section III).

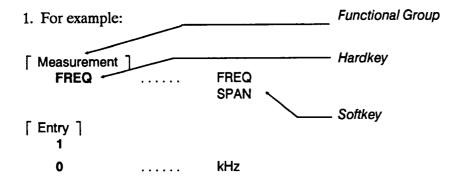
#### Note



FFT Global Interface... FAILS

This failure message may occur if the instrument is internally set with unknown parameters before running the test (this can be caused by various measurement setups). Before running any of the FFT self-tests, press the HP 3563A keys as follows:

| Γ | Control ] |
|---|-----------|
|   | PRESET    |


..... RESET

#### **Recommended Test Equipment**

The recommended test equipment for troubleshooting is listed in table 1-2. Any item which meets or exceeds the critical requirements can be substituted for the model listed. These procedures are designed to be run with a minimum amount of equipment.

#### **Key Conventions**

There are two types of keys on the HP 3563A, hardkeys and softkeys. Hardkeys are organized on the front panel according to functional group. See figure 7-1. In these procedures, the functional group is in brackets, the hardkeys appear in bold text, and the softkeys are in regular text.



2. This example instructs you to first press the hardkey FREQ which is found in the Measurement group followed by the softkey FREQ SPAN. Next, enter the number 10 on the numeric keypad located in the Entry group. Specify the measurement unit by pressing the kHz softkey.

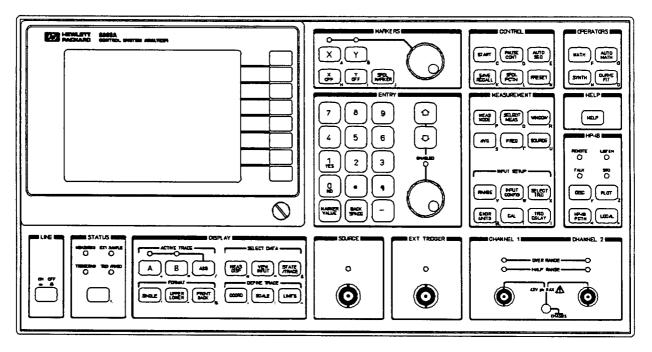



Figure 7-1 Front Panel Illustration

#### **Logic Conventions**

Positive logic convention is used in this manual unless otherwise noted. Positive logic conventions define a logic "1" or "High" as more positive voltage and a logic "0" or "Low" as the more negative voltage.

#### **Safety Considerations**

The HP 3563A is a Safety Class 1 instrument (provided with a protective earth terminal). The instrument and manuals should be reviewed for safety markings and instructions before operation. Refer to the safety symbol table in the preface of this manual.

#### Warning



Service procedures described in this section are performed with the protective covers removed and power applied. Hazardous voltage and energy available at many points can, if contacted, result in personal injury. Servicing must be performed only by trained service personnel who are aware of the hazards involved (such as fire and electrical shock).

#### Caution



Do not insert or remove any circuit board in the HP 3563A with the line power turned ON. Power transients caused by insertion or removal may damage the circuit boards. Many of the parts are static sensitive. Use the appropriate precautions when removing, handling and installing all parts to avoid unnecessary damage.

#### Warning



230 Vdc is present in the A18 power supply assembly even with the line switch in the OFF position and the power cord removed. Be extremely careful when working in the power supply area. This high voltage could cause serious personal injury if contacted. To discharge the capacitors holding this charge perform steps 1 through 3.

- 1. Remove the power cord from the rear panel.
- 2. Remove the bottom cover and power supply shield.
- 3. Wait two minutes after turning the power off to allow the capacitors to discharge.



The Initial Conditions Test is comprised of the following four procedures:

- Power Supply Check
- Keyboard Check
- Display Check
- Clock Check

#### **Power Supply Check**

- 1. Disconnect the power cord from the rear panel. Remove the bottom cover.
- 2. Connect the power cable and press the line switch ON.
- 3. Use table 7-2 to verify the power supply is operating correctly. If any of the values are incorrect start with the A18 Power Supply troubleshooting procedures in Section VIII.

Table 7-2. Power Supply Nominal Values
Return Location is A18TP13

| Supply<br>Name | Output<br>Location | ·     |                | Ripple<br>Tolerance<br>(P-P) |
|----------------|--------------------|-------|----------------|------------------------------|
| +5\$           | A14 J16-1          | +5V   | ± 0.3V         | 50 mV                        |
| +30V           | A14 W13-1          | +30V  | ± 1.8V         | 10 mV                        |
| - 30V          | A14 W13-2          | - 30V | ± 1.8V         | 10 mV                        |
| +15A           | A14 W13-3          | +15V  | ± 0.9V         | 10 mV                        |
| - 15A          | A14 W13-4          | - 15V | ± 0.9V         | 10 mV                        |
| +5 FNTEND      | A14 W13-5          | +5V   | ± 0.3V         | 50 mV                        |
| +2.6V          | A14 W13-6          | +26V  | ± 0.16V        | 50 mV                        |
| +8S1           | A14 W13-7          | +8V   | ± 0.48V        | 25 mV                        |
| +8\$2          | A14 W13-8          | +8V   | ± 0.48V        | 25 mV                        |
| +158           | A14 W13-9          | +15V  | ± 0.9V         | 25 mV                        |
| <b>– 15</b> S  | A14 W13-10         | 15V   | ± 0.9V         | 25 mV                        |
| OTEMPL         | A14 W13-12         | _     | TTL Level High |                              |
| PWRDNL         | A14 W13-13         |       | TTL Level High |                              |
| PWRUP          | A14 W13-14         |       | TTL Level High | _                            |

#### **Keyboard Check**

- 1. Press the line switch OFF.
- 2. Disconnect cable W10 (A14 J15) from the A14 Mother Board.
- 3. Connect the power cable and press the line switch ON.
- 4. Reset the keyboard by putting A15 J9 to the test (T) position, then back to the normal (N) position (see note).

# Note

On some A15 revisions the A15 J9 jumper is not in a convenient location. If this is the case, the keyboard can still be reset using the following procedure:

- a. Press the line switch OFF.
- b. Disconnect cable W17 (A14 J16) from the A14 Mother Board.
- c. Connect a +5V dc power supply and ground to W17, +5V to the red wire and ground to the black wire.
- d. To reset the keyboard, cycle the +5V power supply off, then on.
- 5. The keyboard should respond as follows when it is reset:
  - a. Beeps the beeper and flashes all the LEDs three times except CR12 (Triggering), CR17 (Half Range), and CR19 (Half Range). These LEDs will flash on and stay on since they are controlled by other assemblies.
  - b. Beeps the beeper and then lights the LEDs one at a time in a pattern from left to right, top to bottom.
  - c. Beeps the beeper again and then all the lights should remain on.
  - d. RPG knobs can be check by rotating them clockwise or counter clockwise while watching the front panel. Remote, Listen, Talk, and SRQ LEDS flash in a clockwise or counter clockwise motion.
- 6. If the keyboard does not pass this test start with the A15 Keyboard troubleshooting procedures in Section VIII.
- 7. This test only validates part of the keyboard, it does not validate the system bus interface circuits.
- 8. Press the line switch OFF.
- 9. Connect cables W10 and W17 to the A14 Mother Board.



The keyboard cable (W10) can easily be connected wrong! After connecting the cable, verify that both rows of pins are connected. Red line on the cable goes to number one pin on connector

#### **Display Check**

- 1. Remove the top cover and press the line switch ON.
- 2. Set jumper A17 W1 (located in hole in display shield) to the test (T) position with the power on.
- 3. The pattern displayed should be the same as shown in figure 7-2. The main lines should all connect as shown and the lines in the lower right corner should be parallel.

  If this pattern is not displayed start with the Display Unit troubleshooting procedures in Section VIII.
- 4. Set jumper A17 W1 to the normal (N) position.

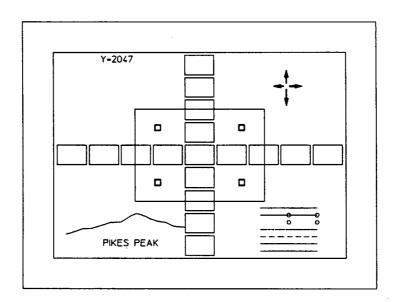



Figure 7-2. Display of Verification Pattern

#### **Clock Check**

- 1. Remove the top cover and press the line switch ON.
- 2. Use table 7-3 to verify various clocks in the instrument. If any of the values are incorrect, go to the troubleshooting procedures in Section VIII for the assemblies specified as the probable cause of failure.

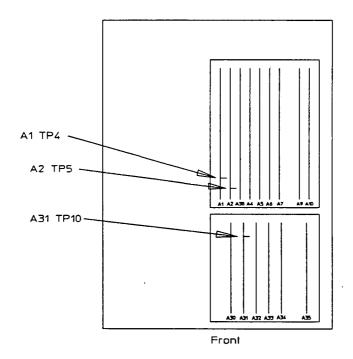



Figure 7-3. HP 3563A Top View, Cover Removed

Table 7-3. Clocks

| Test Location* | Signal Name | Waveform # | Probable Cause | Go To                                    |
|----------------|-------------|------------|----------------|------------------------------------------|
| A31 TP10       | 20.48 MHz   | #1         | A31 Trigger    | A31 Trigger Section VIII                 |
| A1 TP4         | 10.24 MHz   | #2         | A31 Trigger    | A31 Trigger Section VIII                 |
| A2 TP5         | 8 MHz       | #3         | A2 System CPU  | A2, A22 System CPU/HP-IB<br>Section VIII |

<sup>\*</sup>Refer to figure 7-3.

If the fault has not been found, go to the following section, "Power-Up Tests".

#### **Power-Up Tests**

The power-up test procedure is used when there is no display, incorrect display, or the instrument does not respond when a key is pressed. The "Initial Conditions Test" described in the preceeding pages, should be completed before performing the power-up test procedures.

The power-up tests consist of two sets of tests, low-level and high-level. The low-level tests exercise the A2 System CPU, the A38 Memory (Program ROM/Global RAM), the global bus, and the system bus. Fault and pass codes for these core assemblies are displayed using the A2 System CPU test LEDs (A2 DS3, A2 DS4). The high-level power-up tests exercise the A9 FFT, A7 FPP, A5 DGTL FLTR, and A6 D FLTR CONT assemblies. Faults on these assemblies are displayed in the test log (refer to table 7-8 for the description of these messages). The instrument performs a calibration if the power-up tests pass.

Power-up test failures may be caused by one of the following conditions:

- 1. A core assembly is defective (A2, A38).
- 2. An assembly on the system bus or global bus is defective, causing a bus failure.
- 3. The A15 Keyboard system bus interface circuits are defective. (This may be the case when the display is normal after power-up but the instrument does not respond when a key is pressed.)
- 4. A control line is defective.

#### **Power-Up Test Procedure ONE**

To find the cause of the failure, start by referring to the Power-Up Test Codes Table, table 7-6, for the location of the A2 Test LEDs and the LEDs to Hex code translation.

To verify the core assemblies are operating correctly, perform the following:

- 1. Remove the top cover.
- 2. Press the line switch ON.
- 3. Press the reset switch A2 S1 (reset switch on A2 CPU).
- 4. After the reset switch is pressed, the A2 System CPU should flash the test LEDs (A2 DS3, A2 DS4), light the LEDs one at a time, and cycle through several codes as listed in table 7-4. When finished, A2 DS1 should be off.

Table 7-4. LEDs Pass Sequence

| Binary Hex Time Visible |    | Time Visible | Description                       |
|-------------------------|----|--------------|-----------------------------------|
| 0000 0101               | 05 | 1s           | System Processor test             |
| 0001 1110               | 1E | 2.5s         | Starting Program ROM check sum    |
| 1011 0101               | B5 | 3.6s         | Starting Global RAM Test          |
| 1011 0110               | B6 | 15s          | Starting high-level power-up test |
| 1011 0111               | B7 | Remains Lit  | Power-up Tests finished           |

5. Use table 7-5 to help isolate the cause of the failure. Start with the first line.

Table 7-5. Power-Up Self-Tests

| LED Response                                                                                                                                  | Description and What to do Next                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| LEDs pass sequence occurs but screen is defective. The System CPU and system bus are probably okay. The Global bus may be causing the failure | Go to Power-Up Test Procedure TWO.                                |
| LEDs displays a pass/error code > 4 minutes.                                                                                                  | Note HEX error code and then go to Power-Up Test Procedure THREE. |
| A2 DS1 is ON.  or  No response to key presses.                                                                                                | Go to Power-Up Test Procedure THREE.                              |

#### **Power-Up Test Procedure TWO**

Perform this procedure if the display is defective, but the LEDs pass sequence occurs and the instrument responds when SPCL FCTN is pressed.

To find the cause of the failure, start by referring to the Power-Up Test Codes Table, table 7-6, for the location of the A2 Test LEDs and the LEDs to Hex code translation.

- 1. Press the line switch OFF.
- 2. Remove the following assemblies:

A5 Digital Filter A7 FPP A9 FFT

3. Press the line switch ON and the HP 3563A keys as follows:

SPCL
FCTN SERVIC
TEST TEST
MEMORY .... GLOBAL
RAM

If the display does not appear as in figure 7-4, the A38 Memory board is probably the cause of the failure.

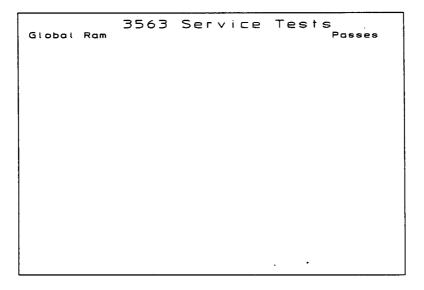



Figure 7-4. Global RAM test passes

#### Fault Isolation Power-Up Tests

- 4. Press the line switch OFF.
- 5. Replace the A7 FPP assembly.
- 6. Press the line switch ON and the HP 3563A keys as follows:

| Control SPCL |      |                |       |              |
|--------------|------|----------------|-------|--------------|
| FCTN         | •••• | SERVIC<br>TEST | ••••• | TEST<br>PROC |
|              |      | TEST<br>FPP    |       | FPP FUNCTION |

If this test fails, the A7 FPP is probably the cause of the failure.

- 7. Press the line switch OFF.
- 8. Replace the A9 FFT assembly.
- 9. Press the line switch ON and the HP 3563A keys as follows:

| Control SPCL FCTN | SPCL  |             | <br>TEST<br>PROC    |
|-------------------|-------|-------------|---------------------|
|                   | ••••• | TEST<br>FFT | <br>FFT<br>FUNCTION |

If this test fails, start with the A9 FFT troubleshooting procedures in Section VIII.

- 10. Press the line switch OFF.
- 11. Replace the A5 DGTL FLTR assembly.
- 12. Press the line switch ON and the HP 3563A keys as follows:

| Control   SPCL FCTN |       | SERVIC<br>TEST | <br>TEST<br>PROC   |
|---------------------|-------|----------------|--------------------|
|                     | ••••• | TEST<br>DFA    | <br>FILTER<br>TEST |

If this test fails, the A5 Digital Filter is probably the cause of the failure.

13. If the cause of the failure has not been found, go to "Control Line Tests", which appears later in this section.

#### **Power-Up Test Procedure THREE**

Perform this procedure if the LEDs pass sequence does not occur, A2 DS1 is on, or the instrument does not display the special function menu when SPCL FCTN is pressed.

To find the cause of the failure, start by referring to the Power-up Test Codes Table, table 7-6, for the location of the A2 Test LEDs and the LEDs to Hex code translation.

- 1. If the A2 test LEDS display HEX IF (0001 1111), the battery may be failing. Verify A2 B1 measures ≅ 3.9V.
- 2. Press the line switch OFF.
- 3. Remove the bottom cover.
- 4. Disconnect cable W10 from the A14 Mother Board.
- 5. Remove the following assemblies:

A1 Digital Source

A4 Local Oscillator

A5 Digital Filter

A6 Digital Filter Controller

A9 FTT

A7 FPP

A10 Digital I/O

A38 Memory



To remove the A10 Digital I/O board, side cover must be removed and cables to the A10 board must be disconnect.

6. Pull the following assemblies up in their card nests so they are no longer connected to the A14 Mother Board:

A30 Analog Source

A31 Trigger

A32 ADC 1

**A34 ADC 2** 

- 7. Press the line switch ON. The LEDs pass sequence should stop on Hex B1 (1011 0001) and A2 DS1 should be on. If Hex B1 is not displayed, start with the A2 System CPU troubleshooting procedures in Section VIII.
- 8. Press the line switch OFF.
- 9. Replace the A38 Memory assembly.
- 10. Press the line switch ON. The LEDs pass sequence should now occur, stopping on Hex B7 (1011 0111) and A2 DS1 should be off. Also, the display should appear as shown in figure 7-5.

## Note

The System CPU self-tests take up to 50 seconds to complete with several of the boards missing. Also, SYSTEM FAULT is displayed until all the boards are replaced.

The display flickers slighly when the boards are pulled out. If the display is defective or the LEDs pass sequence does not occur, the assembly failing is probably the A38 Memory Board (an A2 CPU global bus driver or the A17 Display Interface could be failing, but this is improbable).

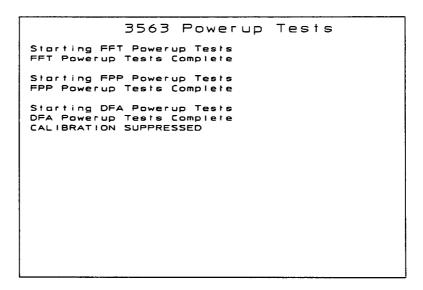



Figure 7-5. Display Active

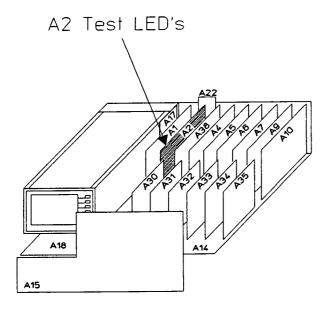
- 11. Press the line switch OFF.
- 12. Connect the A15 Keyboard cable (W10) to the A14 Mother board.

# Note

The keyboard cable (W10) can easily be connected *wrong*! After connecting the cable, verify that both rows of pins are connected. Red line on the cable goes to number one pin on the connector.

- 13. Press the line switch ON. The LEDs pass sequence should occur, stopping on Hex B7 (1011 0111), and A2 DS1 should be off. The keys should now be active. If the LEDs pass sequence does not occur or the keys are not active, the probable cause of the failure is the A15 Keyboard system bus interface circuits. Refer to the A15 Keyboard troubleshooting procedures in Section VIII.
- 14. Replace the A1 Digital Source assembly as follows:
  - a. Press the line switch OFF.
  - b. Replace the assembly.
  - c. Press the line switch ON.
  - d. The LEDs pass sequence should occur, stopping on Hex B7 (1011 0111), and A2 DS1 should be off. If the LEDs pass sequence does not occur, the keys are not active, or the display is defective, the last board inserted is the probable cause of the failure.
- 15. Perform steps 14a through 14d for each of the remaining assemblies. Replace the assemblies in the following order:
  - a. A9 FFT
  - b. A6 Digital Filter Controller
  - c. A7 FPP
  - d. A4 Local Oscillator
  - e. A31 Trigger
  - f. A5 Digital Filter
  - g. A10 Digital I/O
  - h. A34 ADC 2
  - i. A30 Analog Source
  - j. A32 ADC 1
- 16. If the failure has not been isolated, use table 7-6, Power-Up Tests Code Table, and the Control Line Test to help isolate the failure.

#### **Power-Up Tests Code Table**


After the power-up tests are completed, use table 7-6 to help determine the cause of the failure. (Refer to the beginning of this section for the description of the power-up test sequence). The table lists the tests in the order they are run. The A2 Test LEDs Hex code is listed on the vertical axis of the table. The assemblies and subblocks tested or used by the power-up tests are listed on the horizontal axis of the table.

There are two symbols used in the Power-Up Test Codes: O and a filled box. When the symbol "O" is used in the table, the assembly or subblock is used in the test but is not a likely cause of the failure. When the filled box is used in the table, the assembly or subblock is the probable cause of the failure. No symbol means the assembly or subblock is not used in the test.

Note



Shorts on the system bus, the global bus, an interrupt line, or the reset line, can cause false error codes. If an error code is caused by the last assembly inserted, it is probably the assembly defective.



| Example:   |           |      |            |
|------------|-----------|------|------------|
| LEDs       | $\subset$ | 00   | <b>000</b> |
| Binary     | 0001      | 1111 |            |
| Hex        | 1         | F    |            |
| Chart Line | #21       |      |            |

LED ON = 1 LED OFF = 0

| Binary | Hex |
|--------|-----|
| 0001   | 1   |
| 0010   | 2   |
| 0011   | 3   |
| 0100   | 4   |
| 0101   | 5   |
| 0110   | 6   |
| 0111   | 7   |
| 1000   | 8   |
| 1001   | 9   |
| 1010   | Α   |
| 1011   | В   |
| 1100   | С   |
| 1101   | D   |
| 1110   | Ε   |
| 1111   | F   |

| Hex Error            | Cc  | de | ,   | to |   | CI   | nart Line#            |
|----------------------|-----|----|-----|----|---|------|-----------------------|
| 01 to 04             |     |    |     |    |   |      | . 2                   |
|                      |     |    |     |    |   |      | . 3                   |
|                      |     |    |     |    |   |      | . 1                   |
|                      |     |    |     |    | • | •    | .6                    |
|                      |     |    |     |    | • | • •  | . 4                   |
|                      |     |    |     | •  | • | •    | . <del>4</del><br>. 1 |
| 1D                   |     |    |     |    | • | • •  |                       |
|                      |     |    |     | -  |   |      | . 7                   |
|                      |     |    |     |    |   |      | . 21                  |
|                      |     |    |     |    | • |      | . 12                  |
|                      |     |    |     |    |   |      | . 1                   |
| 40 to 53             |     |    |     |    |   |      | . 13                  |
|                      |     |    |     |    |   |      | . 1                   |
|                      |     |    |     |    |   |      | . 9                   |
| _                    |     |    |     |    |   |      | . 10                  |
|                      |     |    |     |    | • |      | . 11                  |
| 5D to 5F             |     |    |     |    |   | <br> | . 1                   |
| 60 to 73             |     |    |     |    |   |      | . 14                  |
|                      |     |    |     |    |   |      |                       |
|                      |     |    |     |    |   |      | .1                    |
| 7A                   |     |    |     |    |   |      | . 10                  |
| 7B                   |     |    | ٠   | •  |   |      | . 9                   |
| 7C                   |     |    | •   | •  | • |      | . 11                  |
| 7D to 7F             |     |    |     |    |   |      | .1                    |
| 80                   |     |    |     |    |   |      | .1                    |
| 81                   |     |    |     |    |   |      | . 23                  |
| 82                   |     |    |     |    |   |      | . 24                  |
| 83                   |     |    |     |    |   |      | . 25                  |
| 84 to 86             |     |    |     |    |   |      | . 15                  |
| 87                   |     |    |     |    |   |      | . 17                  |
| 88                   |     |    |     |    |   |      | . 18                  |
| 89                   |     |    |     |    |   |      | . 19                  |
| 8A to 8C             |     |    |     |    |   |      | . 16                  |
| 8D                   |     |    |     |    |   |      |                       |
| 8E to 8F             |     |    |     |    |   |      | . 1                   |
|                      |     |    |     |    |   |      | ^^                    |
| 90 to 9F<br>A0 to AF |     |    |     |    |   |      | . 27                  |
| B0                   |     |    |     |    |   |      | . 1                   |
| B1                   |     |    |     |    |   |      | _                     |
| B2 to B4             | •   |    |     |    |   |      | .1                    |
| B5                   | • • |    |     |    |   |      | 22                    |
| B6                   |     | •  | •   | •  | • | • •  | . 30                  |
| DZ                   | • • | •  | •   | •  | • | • •  | . 31                  |
|                      | • • | •  | • • | •  | • | • •  | . 1                   |
| B8 to BF             |     | •  | • • | •  | • | • •  | . 5                   |
| C0 to CF             | •   | •  | • • | •  | ٠ | • •  |                       |
| D0 to DF             | •   | •  |     | ٠  | • |      | . 28                  |
| E0 to EF             |     | •  |     | ٠  | • |      | . 29                  |
| F0 to FF             |     | •  |     | •  | • |      | . 1                   |
|                      |     |    |     |    |   |      |                       |
|                      |     |    |     |    |   |      |                       |

Table 7-6. Power-Up Test Codes

Assembly/Subblock

The filled box means the assembly or subblock is the most likely cause of the failure message.

The symbol O means the assembly or sublock is used in the circuit but is not the most likely cause of the failure message.

No symbol means the assembly or subblock is not used in the test.

Note: These tests are run in order starting with the monitor ROM test. The error code is for the first test that fails. A pass code indicates a failure on the next test.

| <u>.</u> و                             | ø                       |                   | (e contes)    |
|----------------------------------------|-------------------------|-------------------|---------------|
| ۲ <sup>۲</sup> وه روايع<br>۱۹ وه روايع | Septity Book on Septice | or hor cyclen her | S CO LANGE OF |
| Miles Job Gol Gol Gol                  | Aplie Bold on by        | du the chapty of  | Population    |

| Chart<br>Line<br># | Hex<br>Pass/Error<br>Code | Test Description                                                      | A2 | A18 |            | 12         | A2       | A2       | A2                                      | A1       | 4 -         | -            | A38      | A38     | A9         |         | _         | A38      | A38                |
|--------------------|---------------------------|-----------------------------------------------------------------------|----|-----|------------|------------|----------|----------|-----------------------------------------|----------|-------------|--------------|----------|---------|------------|---------|-----------|----------|--------------------|
|                    | S                         | ystem CPU Tests                                                       |    |     |            |            |          |          | *************************************** |          |             |              |          |         | _          | _       |           |          |                    |
| 1                  | Undefined                 | Initial Power-Up                                                      |    | 0   |            | ▓          | 0        | <u> </u> |                                         | <u> </u> | Ц           | _            | L        | -       | <u> </u>   | 4       | $\square$ |          | $\perp$            |
| 2                  | 01 to 04                  | Monitor ROM                                                           | 0  | 0   | 1          | 0          |          | 0        | 0                                       | <u> </u> | _           | _            | <u> </u> |         | <u> </u>   | 4       | Ш         | <u> </u> | $\vdash$           |
| 3                  | 05 to 08                  | System Processor                                                      | 0  | 0   |            |            | 0        | 0        | 0                                       | $\perp$  | $\perp$     | 4            |          |         | <u> </u>   | 4       | $\vdash$  | <u> </u> | $\vdash$           |
| 4                  | 10 to 1C                  | Monitor RAM Test Failure                                              | 0  | 0   | Ľ          | 0          | <u>o</u> |          | 0                                       | <u> </u> | $\bot$      | _            |          | $\perp$ | <u> </u>   | 4       | $\square$ | <b> </b> | $\vdash$           |
| 5                  | C0 to CF                  | Monitor RAM Address Failure                                           | 0  | 0   | l 1        | <u>o</u>   | 0        |          |                                         |          | $\perp$     | _            | <u> </u> | $\Box$  | -          | 4       |           | <u> </u> | $\vdash$           |
| 6                  | OC to OF                  | Timer and Interrupt Failures                                          | 0  | 0   | L          | <u>o</u> ] | 0        | 0        |                                         |          |             |              |          |         |            | J       | Ш         | L        | 1                  |
|                    | Program F                 | OM and System Bus Tests                                               |    |     |            |            |          |          |                                         |          | -           |              |          |         |            | _       | _         | _        | ,                  |
| 7                  | 1E                        | Start Program ROM Check Sum                                           | 0  | 0   |            | 0          | 0        | 0        | 0                                       | C        |             |              |          |         | <u> </u>   | 4       |           |          | $oxed{oxed}$       |
| 8                  | B1                        | Program ROM installed ?                                               | 0  | 0   |            | 0          | 0        | 0        | 0                                       | C        | -           | 2            |          |         | <u> </u>   | _       | $\square$ | <u> </u> | <b>↓</b>           |
| 9                  | 5A,7A*                    | Program ROM Failure Low Byte                                          | 0  | 0   |            | 0          | 0        | 0        | 0                                       | C        | _           |              |          |         | _          | 4       | Ш         |          | $\perp \perp \mid$ |
| 10                 | 58,78*                    | Program ROM Failure High Byte                                         | 0  | 0   |            | O          | 0        | 0        | 0                                       | C        |             |              |          |         | $\vdash$   | 4       | $\square$ |          | ↓                  |
| 11                 | 5C,7C*                    | Program ROM Failure, Both Bytes                                       | 0  | 0   |            | <u>o</u>   | 0        | 0        | O                                       | C        |             | ▓            |          |         | _          | 7       |           | <u> </u> | $\perp$            |
| 12                 | 20 to 33                  | Program ROM, Chip Failure, High Byte                                  | 0  | 0   |            | 0          | 0        | 0        | 0                                       | C        | _           | 2            |          |         | _          |         |           |          | $\perp$            |
| 13                 | 40 to 53                  | Program ROM, Chip Failure, Low Byte                                   | 0  | 0   |            | <u>O</u>   | 0        | 0        | 0                                       |          | _           | 2            |          |         | _          | 4       |           | <u> </u> | 4                  |
| 14                 | 60 to 73                  | Program ROM, Chip Failure, Both Bytes                                 | 0  | 0   |            | <u>o</u>   | 0        | 0        | 0                                       | C        |             | 일.           |          |         | <u> </u>   | 4       | $\square$ | ļ        | <del>-</del>       |
| 15                 | 84 to 86                  | Program ROM Failure, System Bus Good                                  | 0  | 0   | -          | <u>O</u>   | 0        | 0        | 0                                       | C        |             | 2            |          |         | <u> </u>   | 4       | Ш         | <u> </u> | 4                  |
| 16                 | 8A to 8C                  | Program ROM Failure, System Bus Good                                  | 0  | 0   |            | <u>o</u>   | 0        | 0        | 0                                       | <u> </u> | <del></del> | 2            |          |         |            | 4       |           | <u> </u> | 4                  |
| 17                 | 87                        | System Bus Failure, High Byte                                         | 0  | 0   | 4 ⊢        | <u>O</u>   | 0        | 0        | 0                                       | C        |             |              | 0        | 0       | <u> </u>   | 4       | Ш         | -        | $\perp$            |
| 18                 | 88                        | System Bus Failure, Low Byte                                          | 0  | 0   | -          | <u>o</u>   | 0        | 0        | 0                                       |          | _           | ▓            | 0        | 0       | _          | _       | $\square$ | <u> </u> | $\perp$            |
| 19                 | 89                        | System Bus Failure, Both Bytes                                        | 0  | 0   | ] [        | O_         | 0        | 0        | 0                                       |          |             |              | 0        | 0       |            | 4       |           | $\perp$  | 4                  |
| 20                 | 8D                        | No ROM Passes Check Sum, System Bus<br>Good. Check System Address Bus | 0  | 0   | <b>↓</b> ↓ | 0          | 0        | 0        | 0                                       |          |             |              |          |         |            | ╛       |           |          |                    |
| 21                 | 1F                        | Program ROM and System Bus Tests Pass                                 | 0  | 0   | JL         | <u>O</u>   | 0        | 0        | 0                                       |          |             | $\mathbf{O}$ | O        |         | L          |         |           | L        |                    |
|                    |                           | Global Ram Test                                                       |    |     |            |            |          |          |                                         |          |             |              |          |         |            | _       |           | _        |                    |
| 22                 | B5                        | Starting Global RAM Test                                              | 0  | 0   | ] [        | 0          | 0        | 0        | 0                                       | 9        |             | 0            | 0        | 0       | $\perp$    | ╛       |           | O        | 0                  |
| 23                 | 81                        | Global RAM Failure, Both Bytes                                        | 0  | 0   | ] [        | 0          | 0        | 0        | 0                                       |          |             | <u>O</u>     | 0        | 0       | _          | _       | 0         |          |                    |
| 24                 | 82                        | Global RAM Failure, High Byte                                         | 0  | 0   | ] [        | 0          | 0        | 0        | 0                                       |          |             | 0            | 0        | 0       | <u> </u>   | _       | 0         |          |                    |
| 25                 | 83                        | Global RAM Failure, Low Byte                                          | 0  | O   | ] [        | 0          | 0        | O.       | 0                                       |          |             | 0            | 0        | 0       | <u> </u> _ |         | 0         | <u> </u> |                    |
| 26                 | 90 to 9F                  | Global Bus Failure Bit, "N"                                           | 0  | 0   | ] [        | 0          | 0        | 0        | 0                                       |          |             | <u>O</u>     | 0        | 0       | <u> </u>   | ╝       |           | O        | 0                  |
| 27                 | A0 to AF                  | Giobal RAM Address Failure, Bit "N"<br>Check Giobal Address Bus       | 0  | 0   |            | 0          | 0        | 0        | 0                                       |          |             | 0            | 0        | 0       | L          |         |           |          |                    |
| 28                 | D0 to DF                  | Global RAM Failure, Bit "N"                                           | 0  |     | ] [        | 0          | 0        | 0        | 0                                       |          |             | 의            | 0        | 0       | _          | 4       | 0         |          |                    |
| 29                 | E0 to EF                  | Global RAM Refresh Failure, Bit "N"                                   | 0  | 0   | ] [        | 0          | 0        | 0        | 0                                       |          |             | <u>o</u>     | 0        | 0       |            |         | 0         |          |                    |
| 30                 | B6                        | Executing High Level Power-Up Tests                                   | 0  | 0   | ] [        | 0          | 0        | 0        | 0                                       |          | 21          | 의            | 0        | 0       |            | 2       | 0         |          | 0                  |
| 31                 | 87                        | Power-Up Tests Finished                                               |    |     |            |            | <u> </u> | <u></u>  | <u>L</u>                                |          |             | $\perp$      |          | $\bot$  | ᄔ          | $\perp$ |           |          | .1                 |

<sup>\*</sup>No Information about System Bus

### **Test All**

The Test All sequence thoroughly exercises the digital and the analog hardware in the instrument. This self-diagnostic actually does several types of measurements to determine what is operating correctly. When a fault is found the self-diagnostic exercises suspected circuits using digital signals generated internally, reading status registers, and using the internal analog source and calibrator. The Test All sequence then uses logic to determine the most likely failure based on the results of these measurements.

All failure messages are displayed in the Test Log. For a description of the Test Log messages, refer to "Test Log and Fault Log Descriptions" in this section. If the Test All sequence does not isolate the defective assembly, the individual self-tests for the suspected assemblies can be done individually to help isolate the failure. Use table 7-8, "Test All Messages" as a reference when running any of the service tests. When a test passes, the assemblies and subblocks exercised are most likely operating correctly.

The Test All feature does not isolate failures on the following assemblies:

Core Assemblies
A31 Trigger
A15 Keyboard
A18 Power Supply
A12 Mother Board
A17 Display Interface
HP Digital Display
System and global control lines

If a keyboard related problem is suspected, go to the A15 Keyboard troubleshooting procedures in Section VIII after performing the Test All procedures. If the instrument does not respond when a key is pressed or the display is defective, go to "Initial Conditions Test" at the beginning of this section.

The Test All diagnostic does not use or test the following circuits:

- Digital Inputs and Outputs (refer to "Digital Input Failures" in this section)
   A22 HP-IB (refer to A2, A22 CPU/HP-IB troubleshooting procedures in Section VIII)
- Trigger mode circuits (refer to "Isolating Trigger Failures" in this section for trigger failures)
- Auto Range Circuits (refer to "Self Calibration" in this section)
- Burst and noise source circuits (refer to "Source Failures" in this section)

Follow the Test All procedures beginning with Procedure One, "Test All Start", to isolate the failure.

Fault Isolation Test All

### Test All Procedure ONE - Test All Start

- 1. Press the line switch ON.
- 2. Press the HP 3563A keys as follows:

| Control SPCL FCTN | <br>SERVIC<br>TEST | <br>RESULT<br>TEST |           | TEST      |
|-------------------|--------------------|--------------------|-----------|-----------|
|                   |                    | 1201               | • • • • • | LOG       |
|                   |                    |                    |           | 1 ( ) 1 7 |

- 3. If the FPP, FFT, and Global RAM passed the power-up test, then these assemblies are probably operating correctly. If any of these assemblies failed the power-up test, refer to table 7-7.
- 4. Press the HP 3563A keys as follows:

```
Control PRESET RESET

Input Setup CAL AUTO ON OFF

Control SPCL SERVIC TEST TEST ALL
```

This test takes about two minutes to complete, if there are no failures. If there is a failure, it may take four minutes to complete. The test log is displayed when the self-tests are completed.

- 5. Refer to table 7-6 to verify the normal Test All result.
- 6. Use figure 7-7 after running the Test All diagnostic.

```
Floating Point Processor Passes
FFT Processor Passes
Global Ram Passes
Zoom Test Passes
Calibration Passes
DFA Filtered Chan Interrupt Passes
DFA Unfiltered Chan Interrupt Passes
Arb Source Address
Arb Source PreScaler
Arb Source Zeros Passes
Arb Source Ones Passes
```

Figure 7-6. Test All Passes

Table 7-7. Test All Results

| Tests not listed may either pass or fail(don't care                            | e). To use table, start with first line.                                  |
|--------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Test All Result                                                                | Go To                                                                     |
| 1. Test Ali passes                                                             | "Test All Table" in this section                                          |
| Test All does not complete self-tests (test log is not displayed)              | Test All Procedure TWO "Test All Does Not Complete"                       |
| 3. FPP Fails                                                                   | Replace A7 board See table 4-1 for the HP part number                     |
| 4. FFT Fails                                                                   | A9 FFT troubleshooting procedures in Section VIII                         |
| 5. Global RAM Fails                                                            | Replace A38 board                                                         |
| 6. Keyboard Status Test Fails                                                  | A15 Keyboard troubleshooting procedures in Section VIII                   |
| 7. DFA Interrupt Fails                                                         | "Isolating Front End Failures" procedures in this section                 |
| DFA Unfiltered Chan     Interrupt Fails                                        | "Isolating Front End Failures" procedures in this section                 |
| 9. Arb Source Fails                                                            | Isolating Front End Failures Procedure TWO, "Lo and Digital Source Check" |
| 10. Source Test Fails, Calibration Fails, Front End Passes                     | "Source Failures" procedures in this section                              |
| 11. Calibration Fails, Front End Passes, Source Test Passes                    | A30 Analog Source troubleshooting procedures in Section VIII              |
| 12. Calibration Fails, Front End Fails only on one channel, Source Test Passes | Isolating Front End Failures Procedure THREE, "Digital Check"             |
| 13. Source Test Fails, Front End Fails, Calibration Fails                      | "Isolating Front End Failures" procedures                                 |

#### **Test All Table**

Use table 7-8 to help determine the failure after running the Test All diagnostic or any individual self-tests. The table lists the self-tests in the order the Test All diagnostic executes them. A pass message indicates the assemblies and subblocks tested are probably operating correctly. The pass/fail messages are listed on the vertical axis of the table. The assemblies and subblocks tested or used by the self-tests are listed on the horizontal axis of the table. (Refer to the introduction of the Test All section for the list of assemblies not tested by Test All.)

There are two symbols used in table 7-8: O and X. When the symbol "O" is used in the table, the assembly or subblock is used in the test but is not a likely cause of the failure. When the symbol "X" is used in the table, the assembly or subblock is probably the cause of the failure. No symbol means the assembly or subblock is not used in the test.

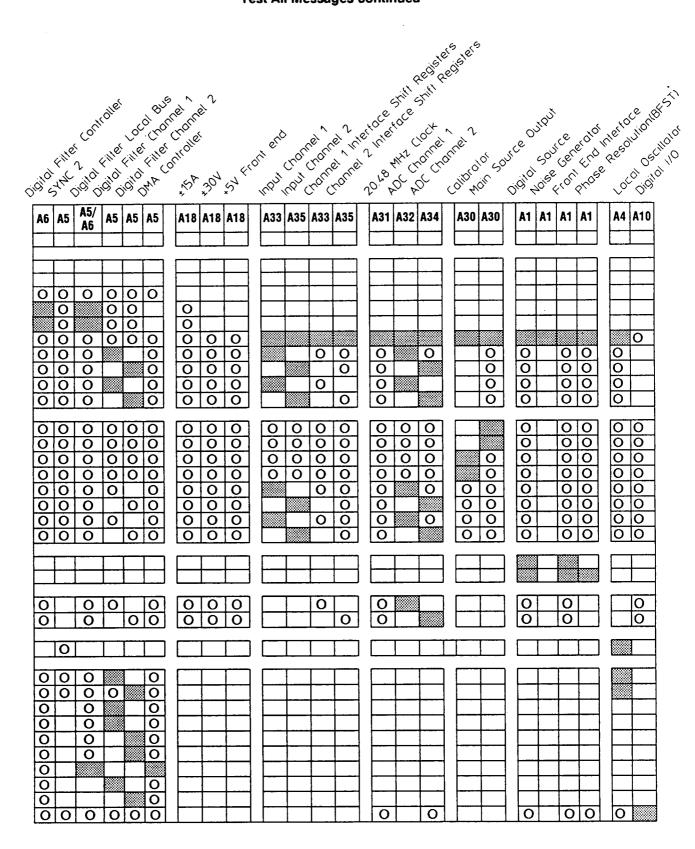
Table 7-8. Test All Messages

The filled box means the assembly or subblock is the most likely cause of the failure message.

The symbol O means the assembly or sublock is used in the circuit but is not the most likely cause of the failure message.

No symbol means the assembly or subblock is not used in the test.

Note: Press SELF TEST ... SERVIC TEST ... TEST ALL to run all of the tests. To run individual tests press the key listed under the "Press Key" column.


Assembly/Subblock

8 Mily Stephen length of the land of the length of the land of the

85, 54 AKY (10C)

| Pass/<br>Fail Messages              | Description                | A2      | A18         | A2                   | -             | A38 | _  | A38 | A14 | A18 | A17 | A15 | A7                                     | A9           | A18              | A31                  |
|-------------------------------------|----------------------------|---------|-------------|----------------------|---------------|-----|----|-----|-----|-----|-----|-----|----------------------------------------|--------------|------------------|----------------------|
| Power-up Test Codes                 | See Table 7-6              | 0       | 0           | 0                    | 0             | 0   | 0  | 0   | 0   |     |     |     | L                                      |              | L                |                      |
|                                     | I                          | 10      |             | $\overline{\Lambda}$ | $\overline{}$ |     | o  | 0   | 0   | 0   | O   | 0   |                                        | *****        |                  | -                    |
| FFT 'messages'                      | FFT Self-Test              | 10      | 0           | 0                    | 90            | 00  | 0  | 0   | 0   | 0   | 0   | 0   | *****                                  | ******       | -                | $\vdash\vdash\vdash$ |
| FPP 'messages'                      | FPP Self-Test              | 10      | Ö           |                      |               | _   |    | -   |     | 0   |     | 0   | ************************************** |              | 0                | 0                    |
| DFA Interrupt "messages"            | DFA Interrupt Test         | 10      | 0           | 0                    | 0             | 0   | 0  | 0   | 0   |     |     |     | _                                      |              | 18               | 8                    |
| DFA Counter *bit#*                  | DFA Local Bus Echo         | 10      | 0           | Ö                    | 0             | 0   | Ö  | Ö   | 0   | Ö   | 0   | 0   |                                        |              | 6                | 8                    |
| DFA Local Bus "bit#"                | DFA Local Bus Echo         | 10      | 0           | Ō                    | Ō             | 0   | 0  | Ö   | Ö   | Ŏ   | Ö   | ŏ   | <u> </u>                               |              |                  | 尚                    |
| Calibration'messages'               | Self-Calibration           | 0       | 0           | 0                    | 0             | 0   | 0  | 0   | 0   | 0   | Ó   | 0   | Ö                                      | Ö            | 0                |                      |
| Channel 1 Zoom Signal               | Zoom Test                  | 10      | 0           | 0                    | Ō             | 0   | 0  | 0   | 0   | Ó   | 0   | 0   | Ö                                      | Ö            | Ö                | 읮                    |
| Channel 2 Zoom Signal               | Zoom Test                  | 0       | 0           | 0                    | 0             | 0   | 0  | 0   | 0   | 0   | 0   | 0   | 0                                      | 0            | 0                | 의                    |
| Channel 1 Zoom Noise                | Zoom Test                  | 0       | 0           | 0                    | 0             | 0   | 0  | 0   | 0   | 0   | 0   | 0   | 0                                      | 0            | 0                | 0                    |
| Channel 2 Zoom Noise                | Zoom Test                  | 10      | 0           | 0                    | 0             | 0   | 0  | 0   | 0   | 0   | 0   | 0   | 0                                      | 0            | 0                | 0                    |
| Source Distortion                   | Source Test                | То      | 0           | О                    | O             | 0   | О  | О   | 0   | 0   | 0   | 0   | 0                                      | 0            | 0                | 0                    |
| Source Signal Level                 | Source Test                | Ō       | O           | 0                    | 0             | O   | 0  | 0   | 0   | 0   | 0   | 0   | 0                                      | 0            | 0                | 0                    |
| Calibration Distortion              | Source Test                | ō       | O           | Ō                    | ō             | O   | 0  | O   | 0   | 0   | 0   | 0   | 0                                      | O            | О                | 0                    |
| Calibration Signal Level            | Source Test                | ō       | Ŏ           | ō                    | ō             | 0   | Ō  | O   | 0   | 0   | 0   | 0   | 0                                      | ठ            | 0                | O                    |
| Channel 1 Operation                 | Front End Test             | Tō      | ō           | ō                    | ō             | Ō   | Ō  | O   | Ō   | 0   | o   | 0   | O                                      | न            | 0                | 0                    |
| Channel 2 Operation                 | Front End Test             | lo      | ō           | ō                    | ō             | Ō   | ō  | ō   | 0   | 0   | 0   | 0   | 0                                      | 0            | 0                | 0                    |
| Channel 1 Distortion                | Front End Test             | o       | O           | 0                    | 0             | 0   | 0  | 0   | 0   | 0   | 0   | 0   | 0                                      | O            | 0                | 0                    |
| Channel 2 Distortion                | Front End Test             | 0       | 0           | 0                    | 0             | 0   | 0  | 0   | 0   | 0   | 0   | 0   | 0                                      | 0            | 0                | 0                    |
|                                     |                            |         |             |                      |               |     |    |     |     |     |     |     |                                        |              |                  |                      |
| Digital Source F/E Interface "bit#" | Digital Source Self Test   | 0       | 0           | 0                    | 0             | 0   | 0  | 0   | 0   | 0   | 0   | 0   | <u> </u>                               | $oxed{oxed}$ | <u> </u>         | 0                    |
| Digital Source Main Test "bit#"     | Digital Source Self Test   | 0       | 0           | 0                    | 0             | 0   | 0  | 0   | 0   | 0   | 0   | 0   |                                        | لـــا        | L                | 10                   |
| ADC Channel 1 'messages'            | ADC Tests                  | To      | О           | 0                    | О             | 0   | О  | О   | 0   | 0   | О   | О   | Ι                                      | $\Box$       | 0                | О                    |
| ADC Channel 2 "message"             | ADC Tests                  | lŏ      | ŏ           | ŏ                    | ŏ             | ŏ   | ŏ  | ŏ   | ō   | ŏ   | ŏ   | Ŏ   |                                        |              | Ō                | Ō                    |
| ADO ORGANICE MICEORY                |                            |         | , <u> </u>  | <u> </u>             |               |     |    |     | 1   |     |     |     |                                        | 1            |                  | -                    |
| LO 'messages'                       | LO Functional              | 0       | 0           | 0                    | 0             | 0   | 0  | 0   | 0   |     | 0   | 0   |                                        |              |                  | 0                    |
|                                     | To the Second Management   | 70      | 10          | 10                   | О             | О   | Το | О   | О   | О   | Го  | 0   | 0                                      | О            | ГО               | О                    |
| DFA Functional Channel 1            | Zoom with Square Wave Test |         | 0           | 0                    | 8             | 0   | 16 | 0   | 6   | 6   | 0   | 6   | lŏ                                     | ŏ            | 10               | ŏ                    |
| DFA Functional Channel 2            | Zoom with Square Wave Test |         | <del></del> | -                    | +             |     | -  | 6   | 0   | 8   | 6   | 0   | 1                                      | ᅢ            | 10               | ŏ                    |
| DFA Channel 1 Real Filter           | DFA Data Echo              | -   은   | 9           | 0                    | 8             | 8   | 0  | 8   | 6   | 6   | 8   | 6   | ├                                      | +-           | 능                | <del>ि</del>         |
| DFA Channel 1 Imaginary Filter      | DFA Data Echo              | ᆜᅌ      | Ö           |                      | +             | +   | 4  | +   | +   | -   | 8   | +   | ├                                      | ╁─┤          | - <del>-</del> - | 18                   |
| DFA Channel 2 Real Filter           | DFA Data Echo              | 10<br>0 | Ö           | 0                    | Ö             | 0   | 닏  | 0   | 0   | 9   |     | lö  | <del> </del>                           | $\vdash$     | 100              | +                    |
| DFA Channel 2 Imaginary Filter      | DFA Data Echo              | Ö       | Ŏ           | Ö                    | Ŏ             | Ö   | lŏ | 0   | 0   | 0   | 0   | Ö   | <del> </del>                           | $\vdash$     | 10               | 18                   |
| DMA 'messages'                      | DFA DMA Bus Echo           | 10      | 0           | 0                    | Ō             | Ö   | lõ | ΙÖ  | Ö   | 0   | Ö   | 16  | <del> </del>                           | igwdapprox   | <u> </u>         | Ö                    |
| DFA Filter Bus 1 "bit#"             | DFA Filter Bus Test        | 10      | 0           | 0                    | Ō             | Ō   | Ö  | Ö   | 0   | 0   | 0   | lö  |                                        | $\vdash$     | \<br>  Q         | Š                    |
| DFA Filter Bus 2 "bit#"             | DFA Filter Bus Test        | 10      | 0           | 0                    | 0             | 0   | Ŏ  | Ö   | Ó   | Ö   | 0   | 0   | ₩                                      | 1            | Ìõ               | 0                    |
| ARB Source Fails                    | Digital I/O Test           | 0       | 0           | 0                    | О             | 0   | 0  | 0   | 0   | 0   | 0   | 0   |                                        |              | 0                | 0                    |

#### **Test All Messages continued**



# **Test All Procedure TWO - Test All Does Not Complete**

Use this procedure when the test log is not displayed within 5 minutes after pressing TEST ALL.

- 1. Press the line switch OFF.
- 2. Remove the following assemblies:

A5 Digital Filter A7 FPP A9 FFT A10 Digital I/O

To remove the A10 board, the side cable must be disconnected.



3. Press the line switch ON and the HP 3563A keys as follows:

Control SPCL FCTN

..... SERVIC

TEST .... TEST

MEMORY ....

GLOBAL RAM

If test fails or the display does not appear as in figure 7-7, replace the A38 assembly. See table 4-1 for the HP part number.

- 4. Press the line switch OFF.
- 5. Replace the A7 FPP assembly.

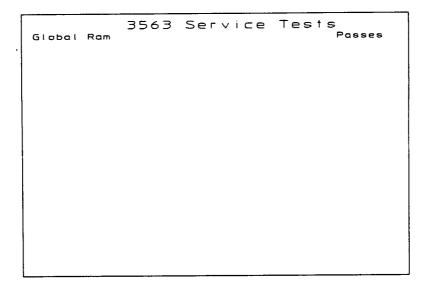



Figure 7-7. Global RAM Test Passes

6. Press the line switch ON and the HP 3563A keys as follows:

| 「Control ] SPCL |       |                |       |               |
|-----------------|-------|----------------|-------|---------------|
| FCTN            | ••••• | SERVIC<br>TEST |       | TEST<br>PROC  |
|                 | ••••• | TEST<br>FPP    | ••••• | FPP<br>FUNCTN |

If this test fails, replace the A7 board. See table 4-1 for the HP part number.

- 7. Press the line switch OFF.
- 8. Replace the A9 FFT assembly.
- 9. Press the line switch ON and the HP 3563A keys as follows:

| Control 7 SPCL FCTN | <br>SERVIC<br>TEST | ••••  | TEST                  |
|---------------------|--------------------|-------|-----------------------|
|                     | <br>TEST<br>FFT    | ••••• | PROC<br>FFT<br>FUNCTN |

If this test fails, start with the A9 FFT troubleshooting procedures in Section VIII.

Fault Isolation Test All

- 10. Press the line switch OFF.
- 11. Replace the A5 DGTL FLTR assembly.
- 12. Press the line switch ON.
- 13. Press the HP 3563A keys as follows:

SPCL
FCTN SERVIC
TEST TEST
PROC

TEST
DFA FILTER
TEST

If this test fails, replace the A5 board. See table 4-1 for the HP part number.

- 14. Press the line switch OFF.
- 15. Replace the A10 Dital I/O Board.
- 16. Press the line switch ON.
- 17. Press the HP 3563A keys as follows:

Control |
SPCL
FCTN SERVIC
TEST TEST
SOURCE .... ARBITARY

- 18. If the display is normal and the fault has not been found, go to the next section, "Isolating Front End Failures".
- 19. If the display is defective and the fault has not been found, go to the "Control Line Test" troubleshooting procedures appearing later in this section.

If this test fails go to Digital Input Failures.

# **Isolating Front End Failures**

This procedure assumes the core assemblies are operating correctly and the Test All procedure was done. The self-diagnostic message "Front End Fails" can be caused by the following assemblies:

A1 Digital Source

A4 Local Oscillator

A5 Digital Filter

A6 Digital Filter Controller

A10 Digital I/O

A30 Analog Source

A32 Analog Digital Converter Channel 1

A33 Input Channel 1

A34 Analog Digital Converter Channel 2

A35 Input Channel 2

A31 Trigger



For some failures it takes up to three minutes to complete a test. If a test takes more than five minutes to terminate (the test log is displayed), the test has failed.

## Isolating Front End Failures Procedure ONE - Signal Check

- 1. Press the line switch OFF.
- 2. Remove the top cover.
- 3. Press the line switch ON.
- 4. After the power-up tests are completed, use a scope to verify the signals listed in table 7-9. If all the signals are operating correctly, go to step 5.

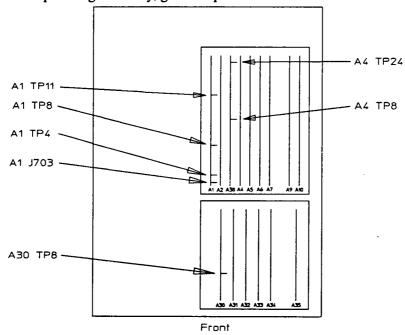



Figure 7-8. HP 3563A Top View, Cover Removed

Table 7-9. Front End Signal Check

| Test Location     | Signal Name         | Waveform #       | Probable Cause                               | Go To                                               |
|-------------------|---------------------|------------------|----------------------------------------------|-----------------------------------------------------|
| A1 TP4            | 10.24 MHz           | #2               | A31 Trigger                                  | A31 troubleshooting procedures in Section VIII      |
| A1 TP8            | SAMP                | #5               | A34 ADC 2                                    | A32, A34 troubleshooting procedures in Section VIII |
| A1 J703-1         | DREQL               | #5               | A5 Digital Filter<br>A6 D FLTR CONT          | See Below                                           |
| A4 TP8            | SYNC2               | #6               | A5 Digital Filter<br>A6 D FLTR CONT<br>A4 LO | SYNC2 Test, Procedure SIX                           |
| A4 TP24           | COS                 | #6               | A4 LO                                        | See Below                                           |
| Refer to step 5 f | or key presses to v | iew CNTCLK.      |                                              |                                                     |
| A1 TP11           | CNTCLK              | #4               | A1 Digital Source                            | A1 troubleshooting procedures in Section VIII       |
| Press A2 S1 to    | view the STIM@ w    | aveform (STIM@ i | sdisabled when calibration                   | n is done).                                         |
| A30 TP8           | STIM@               | #8               | A30 Analog Source                            | A30 troubleshooting procedures in Section VIII      |

A4, A5, A6, A7 and A17 board assemblies cannot be repaired to the component level. See table 4-1 for the HP part numbers.

5. Press the HP 3563A keys as follows:

| Control SPCL |       |                |       |                       |
|--------------|-------|----------------|-------|-----------------------|
| FCTN         | ••••• | SERVIC<br>TEST |       | LOOP<br><u>ON</u> OFF |
|              | ••••• | TEST<br>SOURCE | ••••• | FR END                |

6. After viewing the waveform, press A2 S1 (reset switch on A2 CPU).

# Isolating Front End Failures Procedure TWO - LO and Digital Source Check

| 1. | . Press A2 S1 (reset switch on A2 CPU).                                                                                                              |               |                  |                |                |         |                |  |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------|----------------|----------------|---------|----------------|--|--|
| 2. | Press the HP 3                                                                                                                                       | 3563A keys a  | s follows:       |                |                |         |                |  |  |
|    | Control SPCL FCTN                                                                                                                                    | •••••         | SERVIC<br>TEST   | •••••          | TEST<br>SOURCE |         | LO<br>FUNCTION |  |  |
| 3. | If this test fails                                                                                                                                   | , Replace th  | e A4 LO asse     | mbly.          |                |         |                |  |  |
| 4. | If this test pass                                                                                                                                    | ses, the A4 L | ocal Oscillato   | or is probably | working cor    | rectly. |                |  |  |
| 5. | Press the HP 3                                                                                                                                       | 3563A keys a  | s follows:       |                |                |         |                |  |  |
|    | Control SPCL FCTN                                                                                                                                    |               | SERVIC<br>TEST   |                | TEST<br>SOURCE |         | SOURCE<br>MAIN |  |  |
| 6. | 6. When test is completed, note the test log message and then press:                                                                                 |               |                  |                |                |         |                |  |  |
|    |                                                                                                                                                      | •••••         | FR END<br>INTFCE |                |                |         |                |  |  |
|    | If the Source main test or the Digital Source F/E interface test fails, start with the A1 Digital Source troubleshooting procedures in Section VIII. |               |                  |                |                |         |                |  |  |

If these tests pass, the Digital Source interface circuits to the Inputs, ADC's, and Analog Source are probably operating correctly.

7. Continue fault isolation with Isolating Front End Failures Procedure THREE, "Digital Check".

## Isolating Front End Failures Procedure THREE - Digital Check

| 1 | Dress | the | line | switch | OFF |
|---|-------|-----|------|--------|-----|
|   |       |     |      |        |     |

| 2. | Pull | the | following | assemblies | up in | their o | card | nests: |
|----|------|-----|-----------|------------|-------|---------|------|--------|
|----|------|-----|-----------|------------|-------|---------|------|--------|

A32 ADC 1 A33 INPUT 1 A34 ADC 2 A35 INPUT

- 3. Press the line switch ON.
- 4. Press the HP 3563A keys as follows:

| Control SPCL FCTN | <br>SERVIC<br>TEST | <br>TEST<br>PROC  |
|-------------------|--------------------|-------------------|
|                   | <br>TEST<br>DFA    | <br>DFA<br>FUNCTN |

If this test fails, replace the A5 and the A6 boards. See table 4-1 for the HP part numbers.

- 5. If this test passes, the A5 Digital Filter and A6 Digital Filter Controller assemblies are probably operating correctly. Replace all assemblies in their card nests.
- 6. Press the HP 3563A keys as follows:

| Control PRESET    |      |                |                    |               |
|-------------------|------|----------------|--------------------|---------------|
| Control SPCL FCTN | •••• | SERVIC<br>TEST | <br>TEST<br>SOURCE | <br>ARBITRARY |

7. When the tests are completed, note the test log messages and then press:

..... RETURN
..... TEST
INPUT ..... DIGITAL
..... INTERN
PATH

| 3. | When the tests are comple               | eted, note the | test log mes | sages and then pr | ess: |
|----|-----------------------------------------|----------------|--------------|-------------------|------|
|    | • • • • • • • • • • • • • • • • • • • • | RETURN         |              |                   |      |
|    |                                         | ADC            |              | DIGITAL           |      |

9. Refer to table 7-10 for a description of each test log message and instructions of what to do next.

Table 7-10. ADC or Digital I/O Test Log Messages

| Message                                                                                                | What To Do Next                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| All Arb Source test Pass<br>DIG Internal Path Passes<br>ADC Gate Array Passes                          | The data path from the ADC through the Digital I/O to the Digital Filter is okay. The Digital I/O is probably okay. Go to Procedure FOUR, "Output Sine Check." |
| Any Arb Source test fails<br>or Dig Internal Path fails<br>ADC Gate Array Passes                       | The A10 Digital I/O is most likely failing. Replace the A10 Digital I/O.                                                                                       |
| All Arb Source tests pass Dig Internal Path Passes ADC Channel 2 Gate Array Passes ADC Channel 1 Fails | A34 ADC 1 is most likely failing. Go to A32, A34 troubleshooting procedures in Section VIII                                                                    |
| Any Arb Source test fails<br>or Dig Internal Path fails<br>ADC Channel 2 Gate Array fails              | Either the Digital I/O is failing or the A34 ADC 2.<br>Go to Procedure FIVE, "Input, ADC and Digital I/O Failures."                                            |

# Isolating Front End Failures Procedure FOUR - Output Sine Check

1. Connect a scope to the source output on the front panel. Set the scope as follows:

CH1 V/Div

2 V/Div

Coupling

dc

Time/Div

 $500 \,\mu\text{s/Div}$ 

Trigger

CH1

2. Press the HP 3563A keys as follows:

[ Measurement ]

SOURCE

SOURCE

LEVEL

5 V

..... FIXED

SINE

1 kHz

3. Refer to figure 7-9 to verify the correct result.

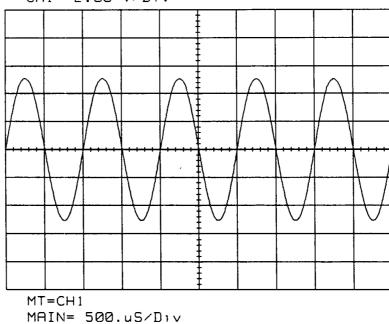



Figure 7-9. Sine Wave

- 4. If this test passes, the A4 Local Oscillator, the A1 Digital Source, and the A30 Analog Source are probably operating correctly, (except for chirp, noise, and trigger circuits).
- 5. Continue fault isolation with Procedure FIVE, "Input, ADC, and Digital I/O Failures."

## Isolation Front End Failures Procedure FIVE - Input, ADC, and Digital I/O Failures

This procedure isolates failures between the following assemblies:

A10 Digital I/O A32 ADC 1 A33 INPUT 1 A34 ADC 2 A35 INPUT 2

The HP 3563A has two sets of identical assemblies: ADC 1 is identical to ADC 2 and Input 1 is identical to Input 2. This procedure interchanges these assemblies to aid in troubleshooting.

Note

A failure on the ADC 2 board or the Digital I/O board may cause **both** channels to fail. Furthermore, the Input 1 board will not operate if the Input 2 board is removed.

1. Press the HP 3563A keys as follows:

Control | SPCL | SERVIC | TEST | TEST | INPUT | DIGITAL | TEST |

2. When test is completed, note test log messages and then press:

..... FR END FUNCT

- 3. When test is completed, note test log messages.
- 4. Press the line switch OFF.
- 5. Exchange the ADC 1 and the Input 1 pair with the ADC 2 and Input 2 pair.
- 6. Press the line switch ON and repeat step 1.
- 7. If the same channel fails as failed before the exchange, the most likely cause of the failure is the A10 Digital I/O assembly. Replace the assembly. Refer to table 4-1 for the HP part number.
- 8. Press the line switch OFF.
- 9. Exchange the ADC 1 board with the ADC 2 board.

- 10. Press the line switch ON and repeat step 1.
- 11. If the same channel fails as failed before the exchange, start troubleshooting with the input assembly for that channel (go to the A33, A35 Input troubleshooting procedures in Section VIII).
- 12. If the other channel now fails, start troubleshooting with the ADC assembly for that channel. Go to the A32, A34 ADC troubleshooting procedures in Section VIII.
- 13. The A30 Analog Source is the most likely cause of the failure IF the following are true:
  - The Signal Check passed (Procedure ONE).
  - The LO and Digital Source Check passed (Procedure TWO).
  - The Digital Check Passed (Procedure THREE).
  - Both channels failed, "FR END FUNCT" before the exchange.
  - Both channels failed, "FR END FUNCT" after the exchange.
- 14. Continue fault isolation with Procedure SIX, "SYNC2 Test."

## Isolating Front End Failures Procedure SIX - SYNC2 Test

The A4 Local Oscillator will function without the A5 Digital Filter if the SYNC2 signal is activated. Perform this procedure to determine if the A5 Digital Filter is the cause of the failure.

- 1. Press the line switch OFF.
- 2. Remove the A5 Digital Filter.
- 3. Put the extender board in the A5 Digital Filter's card nest.
- 4. Connect a square wave to pin 16 on the extender board as follows:

Function Square Wave Frequency 250 kHz
Amplitude 5 Vpp dc Offset 2.5 V

5. Press the line switch ON and press the HP 3563A keys as follows:

[ Measurement ]

SOURCE ..... 5 V

SOURCE

TYPE ..... FIXED

SINE ..... 1 kHz

6. Use a scope to verify COS at A4 TP24; table 7-31, Waveform #7.

If this signal is not correct, replace the A4 assembly. See table 4-1 for the HP part number.

7. Connect the scope to the source output on the front panel. Set the scope as follows:

CH1 V/Div 2 V/Div Coupling dc

Time/Div  $500 \mu s/Div$ 

Trigger CH1

8. Refer to figure 7-10 to verify the correct result.

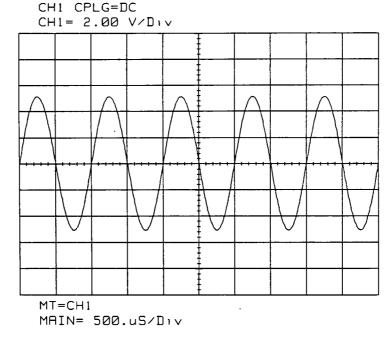



Figure 7-10. SYNC 2 Test Sine Wave

If this test fails, start with the A4 Local Oscillator troubleshooting procedures in Section VIII.

9. If this test passes, the A4 Local Oscillator, the A1 Digital Source, and the A30 Analog Source are probably operating correctly, (except for chirp, noise, and trigger circuits). If this test passes, the most likely cause of failure is the A5 Digital Filter assembly. Another possible cause of failure, although unlikely, is the A6 Digital Filter Controller assembly.



If the cause of the failure has not been found, go to the "Control Line Tests" which appears later in this section.

## **Source Failures**

Source output failures can be caused by the A1 Digital Source, the A4 Local Oscillator, the A10 Digital I/O or the A30 Analog Source. To isolate the defective assembly, follow the procedures beginning with the "Source Failures Start" procedure.

## Source Failures Procedure ONE - Source Failures Start

- 1. If all the source functions are operating except the random noise and burst random, start with the A1 Digital Source troubleshooting procedures in Section VIII.
- 2. If all the source functions are operating except burst random, periodic chirp, or burst chirp, go to Procedure THREE, "Burst Failures."
- 3. Press the HP 3563A keys as follows:

| Control SPCL FCTN | ••••••<br>• | SERVIC<br>TEST | <br>TEST<br>SOURCE | <br>LO     |
|-------------------|-------------|----------------|--------------------|------------|
|                   |             |                |                    | <br>FUNCTN |

If this test fails, replace the A4 assembly. See table 4-1 for the HP part number.

- 4. If this test passes, the A4 Local Oscillator is probably working correctly.
- 5. Press the HP 3563A keys as follows:

[ Control ]
SPCL
FCTN SERVIC
TEST TEST
SOURCE MAIN

6. When this test is finished press the keys as follows:

FR END INTFCE

7. If the Source Main test or the Digital Source F/E Interface test fails, start with the A1 Digital Source troubleshooting procedures in Section VIII.

If these tests pass, the A1 Digital Source is probably working correctly.

HP 3563A Fault Isolation
Source Failures

8. Press the HP 3563A keys as follows:

| [ Control ] PRESET |               |                |               |                |          |                |
|--------------------|---------------|----------------|---------------|----------------|----------|----------------|
| Control SPCL FCTN  |               | SERVIC<br>TEST |               | TEST<br>SOURCE |          | ARBITRARY      |
| 9. When the te     | st are comple | ted, note the  | test log mess | ages and the   | n press: |                |
|                    |               | RETURN         |               |                |          |                |
|                    |               | TEST<br>INPUT  |               | DIGITAL        |          | INTERN<br>PATH |

The A10 Digital I/O is the most likely cause of the failure IF the following are true:

- The "LO FUNCTN" test passed.
- The "SOURCE MAIN" and "FR END INTFCE" passed.
- The DFA self-tests passed when TEST ALL was run.
- Any of the Arb Source tests failed or the Digital Internal test failed.

# Source Failures Procedure TWO - Source Data

1. Use a logic probe or scope to verify the signals in table 7-11 are toggling between TTL level high and TTL level low.

Table 7-11. Source Data

| Test Location | Signal Name | In/Out | Waveform # | Probable Causes     |
|---------------|-------------|--------|------------|---------------------|
| A4 TP24       | COS         | A4 Out | #6         | A4 Local Oscillator |
| A4 TP16       | NDAT        | A4 Out | #9         | A4 Local Oscillator |
| A4 TP17       | NLD         | A4 Out | #11        | A4 Local Oscillator |
| A4 TP14       | NDCK        | A4 Out | #11        | A4 Local Oscillator |

2. If the "Source Failures Start" and the "Source Data", (Procedures ONE and TWO) passed; start with the A30 Analog Source troubleshooting procedures in Section VIII.

## **Source Failures Procedure THREE - Burst Failures**

- 1. Press the line switch OFF.
- 2. Place the A1 Digital Source on the extender board. Connect the source output to the Channel 1 input.
- 3. Press the line switch ON.
- 4. Press the HP 3563A keys as follows:

| Measurement SOURCE | <br>SOURCE<br>LEVEL | <br>5 V            |
|--------------------|---------------------|--------------------|
|                    | <br>SOURCE<br>TYPE  | <br>BURST<br>CHIRP |
| Display MEAS       | <br>FILTRD<br>INPUT | <br>TIME<br>REC 1  |

5. Refer to figure 7-11 to verify a normal burst chirp.

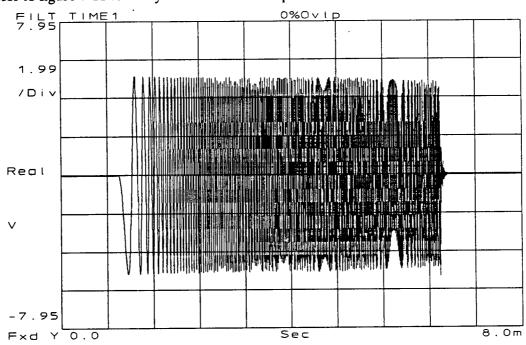



Figure 7-11. Burst Chirp

6. Use a scope and logic probe to verify the signals in table 7-12 are toggling between TTL level high and TTL level low. If any of the values are incorrect, go to Section VIII.

Table 7-12. Burst Mode Signals

| Test<br>Location | Signal  | In/Out | Waveform<br>Number | Probable Causes<br>of Failure |
|------------------|---------|--------|--------------------|-------------------------------|
| A1 J701-3        | NCLK    | A1 Out | #12                | A4 Digital Source             |
| A1 J701-1        | NSYNC   | A4 Out | #12                | A4 Local Oscillator           |
| A1 J1-1          | DACDAT  | A1 Out |                    | A4 Digital Source             |
| A1 J1-5          | BURSTEN | A1 Out | _                  | A4 Digital Source             |



If NCLK fails, NSYNC also fails. Start with the A1 Digital Source troubleshooting procedures in Section VIII.

7. If the signals in table 7-12 are correct, start with the A30 Analog Source troubleshooting procedures in Section VIII.

## **Digital Input Failures**

All the procedures in this section assume the failure has been isolated to the Digital Input section of the instrument. Digital input failures can be caused by one of the following:

A10 Digital I/O Board A20 Connector Board A21 Connector Board External cables

The Arbitrary Self-Test and the Intern Path Self-test, test the A10 Digital I/O Board (including the digital source) without using the connector boards. If this test passes, the internal circuitry of the A10 assembly is most likely working. However, it does NOT test the A10's output circuitry to the connector boards, so the A10 board still could be the cause of the problem.

The Input Pod 1, the Input Pod 2, and the Qualfr Pod self-tests require external hookup to the A40 Test Board to run correctly. These self-tests, test most of the lines through the A10 input/output circuitry, connector boards, and cables. Refer to table 7-18 through table 7-23 for a complete listing of the line connections between the A10 Board and the pod cables.

## Digital I/O Test Setup Procedure

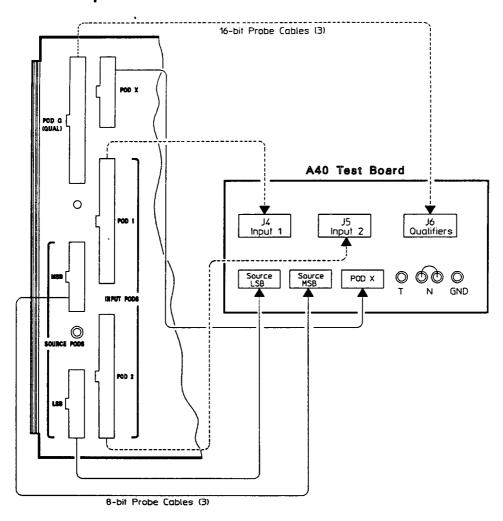



Figure 7-12. Digital Input/Output Test Setup

- 1. Press the line switch OFF.
- 2. Using the cables, connect the test board to the rear panel of the HP 3563A as shown in figure 7-12.
- 3. Verify the jumper is in the normal (N) position.
- 4. Press the line switch ON.

## **Arbitrary Self-Test**

1. Press the HP 3563A keys as follows:

| Control PRESET    |                    |                    |             |
|-------------------|--------------------|--------------------|-------------|
| Control SPCL FCTN | <br>SERVIC<br>TEST | <br>TEST<br>SOURCE | ARBITRARY   |
|                   |                    |                    | <br>, a . D |

If any failure messages are listed, the most likely cause of the failure is the A10 Digital I/O board.

## **Input and Qualifier Self-Test**

1. Press the HP 3563A keys as follows:

| Control PRESET    |                    |                    |      |                |
|-------------------|--------------------|--------------------|------|----------------|
| Control SPCL FCTN | <br>SERVIC<br>TEST | <br>TEST<br>INPUT  |      | DIGTAL         |
|                   |                    | <br>INTERN<br>PATH |      | INPUT<br>POD 1 |
|                   |                    |                    | •••• | INPUT<br>POD 2 |
|                   |                    |                    |      | QUALFR<br>POD  |

2. Use table 7-13 to help isolate the cause of the failure.

Table 7-13. Digital Input/Output Self-Tests

| Message                   | Description and What to do Next                                                                                                                                                                                                                                |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dig Internal Path Fails   | The most likely cause of the failure is the A10 Digital I/O Board                                                                                                                                                                                              |
| Src Clk Connection Fails  | All the rest of the external tests will also fail. Verify the cables are connected to the test board properly and A40 J8 is in Normal (N) position. Rerun the test. If it still fails go to Digital I/O Manual Isolation Tests to further isolate the failure. |
| Dig Pod 1 Zeros Fails     | There is an open in Dnn                                                                                                                                                                                                                                        |
| Bits: nn, mm,             | Go to Digital I/O Manual Isolation Tests.                                                                                                                                                                                                                      |
| Dig Pod 1 Ones Fails      | There is a short in Dnn                                                                                                                                                                                                                                        |
| Bits: nn, mm,             | Go to Digital I/O Manual Isolation Tests.                                                                                                                                                                                                                      |
| Dig Pod 2 Zeros Fails     | There is an open in Dnn                                                                                                                                                                                                                                        |
| Bits: nn, mm,             | Go to Digital I/O Manual Isolation Tests.                                                                                                                                                                                                                      |
| Dig Pod 2 Ones Fails      | There is a short in Dnn                                                                                                                                                                                                                                        |
| Bits: nn, mm,             | Go to Digital I/O Manual Isolation Tests.                                                                                                                                                                                                                      |
| Dig Qualifier Zeros Fails | There is an open in Qnn, Qmm, Q lines for the Qualifier.                                                                                                                                                                                                       |
| Bits: nn, mm,             | Go to Digital I/O Manual Isolation Tests.                                                                                                                                                                                                                      |
| Dig Qualifier Ones Fails  | There is an short in Qnn, Qmm, Q lines for the Qualifier.                                                                                                                                                                                                      |
| Bits: nn, mm,             |                                                                                                                                                                                                                                                                |

## Digital I/O Manual Isolation Tests

### Digital I/O Cable Test

The 40 pin pod cables are interchangeable and the 20 pin pod cables are interchangeable.

- 1. Interchange the cable containing the failing line with one not failing.
- 2. Rerun the self-tests. Refer to table 7-18 through table 7-23 for the line connections.
- 3. If the failure moves, replace the cable.

| Note |
|------|
| 1    |
|      |

The SRC CLK comes from POD X.

### A10 Output Signal Check

- 1. Remove the instrument's right side cover (non-display side).
- 2. Remove the three long cables connected to A10 P101, P102, and P103.
- 3. Press the HP 3563A keys as follows:

Control PRESET

Control SPCL

FCTN ..... SERVIC

TEST ..... TEST INPUT

..... DIGTAL

..... INPUT POD 1

4. Verify the signals listed in table 7-14 while the self-test is running.



The lines only toggle when the test is active. If the test completes before you finish, press the INPUT POD 1 softkey again.

Table 7-14. A10 Output Signal Check

| A10 P103 Pin | TTL Level |
|--------------|-----------|
| (1)          | Toggling  |
| (3)          | Low       |
| (5)          | Low       |
| (7)          | Toggling  |
| A10 P101 Pin | TTL Level |
| (1)          | Toggling  |
| (3)          | Toggling  |
| (5)          | Toggling  |
| (7)          | Toggling  |
| (9)          | Toggling  |
| (11)         | Toggling  |
| (13)         | Toggling  |
| (15)         | Toggling  |
| A10 P102 Pin | TTL Level |
| (1)          | Toggling  |
| (3)          | Toggling  |
| (5)          | Toggling  |
| (7)          | Toggling  |
| (9)          | Toggling  |
| (11)         | Toggling  |
| (13)         | Toggling  |
| (15)         | Toggling  |

If any of the signals are not correct, the most likely cause of the failure is the A10 Digital I/O Board.

### A10 Input Signal Check

Note

Only check the lines for the pod that is failing.



- 1. Remove the three short cables connected to A10 P1, P2, and P3.
- 2. Replace the three long cables connected to A10 P101, P102, and P103.
- 3. Press the HP 3563A keys as follows:

SPCL
FCTN SERVIC
TEST TEST
INPUT

DIGTAL

QUALFR
POD

4. While the self-test is running, verify the signals from the Qualifier cable listed in table 7-15. The Qualifier cable is the short 24 pin cable that was connected to A10 P3.

Note

The lines only toggle when the test is active. If the test completes before you finish, press the QUALFR POD again.

Table 7-15. A10 Input Signal Check - Qualifier Pod

| Qualifier Cable<br>Pin | TTL Level |
|------------------------|-----------|
| (5)                    | Toggling  |
| (7)                    | Toggling  |
| (9)                    | Toggling  |
| (11)                   | Toggling  |
| (13)                   | Toggling  |
| (15)                   | Toggling  |
| (17)                   | Toggling  |
| (19)                   | Toggling  |
| (21)                   | Toggling  |
| (23)                   | High      |

If any of the signals are not correct, the most likely cause of the failure is the A21 Connector Board.

## 5. Press the HP 3563A keys as follows:

| Control SPCL |       |                |           |                |
|--------------|-------|----------------|-----------|----------------|
| FCTN         | ••••• | SERVIC<br>TEST |           | TEST<br>INPUT  |
|              |       |                |           | DIGTAL         |
|              |       |                | • • • • • | INPUT<br>POD 1 |

While the self-test is running, verify the signals from the Input 1 cable listed in table 7-16. The Input 1 cable is the short center 40 pin cable that was connected to A10 P1.



The lines only toggle when the test is active. If the test completes before you finish, press the INPUT POD 1 softkey again.

Table 7-16. A10 Input Signal Check - Pod 1

| Input Pod 1<br>Cable Pin | TTL Level |
|--------------------------|-----------|
| (7)                      | Toggling  |
| (9)                      | Toggling  |
| (11)                     | Toggling  |
| (13)                     | Toggling  |
| (15)                     | Toggling  |
| (17)                     | Toggling  |
| (19)                     | Toggling  |
| (21)                     | Toggling  |
| (23)                     | Toggling  |
| (25)                     | Toggling  |
| (27)                     | Toggling  |
| (29)                     | Toggling  |
| (31)                     | Toggling  |
| (33)                     | Toggling  |
| (35)                     | Toggling  |
| (37)                     | Toggling  |

If any of the signals are not correct, the most likely cause of the failure is the A20 Connector Board.

## 6. Press the HP 3563A keys as follows:

| Control SPCL FCTN | SERVIC   |       |                |
|-------------------|----------|-------|----------------|
| rom               | <br>TEST |       | TEST<br>INPUT  |
|                   |          | ••••• | DIGTAL         |
|                   |          |       | INPUT<br>POD 2 |

While the self-test is running, verify the signals from the Input 2 cable listed in table 7-17. The Input 2 cable is the short lower 40 pin cable that was connected to A10 P2.



The lines only toggle when the test is active. If the test completes before you finish, press the INPUT POD 2 softkey again.



| Cable Pin Input<br>Pod 2 | TTL Level |
|--------------------------|-----------|
| (7)                      | Toggling  |
| (9)                      | Toggling  |
| (11)                     | Toggling  |
| (13)                     | Toggling  |
| (15)                     | Toggling  |
| (17)                     | Toggling  |
| (19)                     | Toggling  |
| (21)                     | Toggling  |
| (23)                     | Toggling  |
| (25)                     | Toggling  |
| (27)                     | Toggling  |
| (29)                     | Toggling  |
| (31)                     | Toggling  |
| (33)                     | Toggling  |
| (35)                     | Toggling  |
| (37)                     | Toggling  |

If any of the signals are not correct, the most likely cause of the failure is the A20 Connector Board.

If the inputs to the A10 Digital I/O Board are operating correctly, the most likely cause of the failure is the A10 Board.

# **Input/Output Cable Connections**

Table 7-18. Signals from Input Pod 1 to A10

| Signal<br>Name | Connector<br>A20 J1 | Board<br>A20 P1 | Digital I/O<br>A10 P1 | A40 Test Board<br>Signal Locations |
|----------------|---------------------|-----------------|-----------------------|------------------------------------|
| Clock          | (3)                 | (3)             | (3)                   | R17                                |
| D15            | (7)                 | (7)             | (7)                   | R16                                |
| D14            | (9)                 | (9)             | (9)                   | R15                                |
| D13            | (11)                | (11)            | (11)                  | R14                                |
| D12            | (13)                | (13)            | (13)                  | R13                                |
| D11            | (15)                | (15)            | (15)                  | R12                                |
| D10            | (17)                | (17)            | (17)                  | R11                                |
| D9             | (19)                | (19)            | (19)                  | R10                                |
| D8             | (21)                | (21)            | (21)                  | R9                                 |
| D7             | (23)                | (23)            | (23)                  | R8                                 |
| D6             | (25)                | (25)            | (25)                  | R7                                 |
| D5             | (27)                | (27)            | (27)                  | R6                                 |
| D4             | (29)                | (29)            | (29)                  | R5                                 |
| D3             | (31)                | (31)            | (31)                  | R4                                 |
| D2             | (33)                | (33)            | (33)                  | R3                                 |
| D1             | (35)                | (35)            | (35)                  | R2                                 |
| D0             | (37)                | (37)            | (37)                  | R1                                 |

Table 7-19. Signals from Input Pod 2 to A10

| Signal<br>Name | Connector<br>A20 J2 | Board<br>A20 P2 | Digital I/O<br>A10 P2 | A40 Test<br>Board |
|----------------|---------------------|-----------------|-----------------------|-------------------|
| Clock          | (3)                 | (3)             | (3)                   | R34               |
| D15            | (7)                 | (7)             | (7)                   | R33               |
| D14            | (9)                 | (9)             | (9)                   | R32               |
| D13            | (11)                | (11)            | (11)                  | R31               |
| D12            | (13)                | (13)            | (13)                  | R30               |
| D11            | (15)                | (15)            | (15)                  | R29               |
| D10            | (17)                | (17)            | (17)                  | R28               |
| D9             | (19)                | (19)            | (19)                  | R27               |
| D8             | (21)                | (21)            | (21)                  | R26               |
| D7             | (23)                | (23)            | (23)                  | R25               |
| D6             | (25)                | (25)            | (25)                  | R24               |
| D5             | (27)                | (27)            | (27)                  | R23               |
| D4             | (29)                | (29)            | (29)                  | R22               |
| D3             | (31)                | (31)            | (31)                  | R21               |
| D2             | (33)                | (33)            | (33)                  | R20               |
| D1             | (35)                | (35)            | (35)                  | R19               |
| D0             | (37)                | (37)            | (37)                  | R18               |

Table 7-20. Signals from Qualifier Pod Cable to A10

| Signal<br>Name | Connector<br>A21 J1 | Board<br>A21 P6 | Digital I/O<br>A10 P3 | A40 Test Board<br>Signal Locations |
|----------------|---------------------|-----------------|-----------------------|------------------------------------|
| CLK            | (3)                 | (3)             | (3)                   | R44                                |
| TRG            | (7)                 | (21)            | (21)                  | R43                                |
| OVF            | (9)                 | (23)            | (23)                  | nc <sup>1</sup>                    |
| Q7             | (23)                | (5)             | (5)                   | R42                                |
| Q6             | (25)                | (7)             | (7)                   | R41                                |
| Q5             | (27)                | (9)             | (9)                   | R40                                |
| Q4             | (29)                | (11)            | (11)                  | R39                                |
| Q3             | (31)                | (13)            | (13)                  | R38                                |
| Q2             | (33)                | (15)            | (15)                  | R37                                |
| Q1             | (35)                | (17)            | (17)                  | R36                                |
| QO             | (37)                | (19)            | (19)                  | R35                                |

<sup>&</sup>lt;sup>1</sup> No Connection

Table 7-21. Signals from A10 to Source MSB Pod Cable

| Signal | A21 Connector Board |      |     | A10<br>Digital<br>I/0 | A40 Test Board  |      |      |                  |
|--------|---------------------|------|-----|-----------------------|-----------------|------|------|------------------|
| Name   | J                   | 2    | Ri  | N1                    | U1 <sup>2</sup> | P3   | P101 | Signal Locations |
|        |                     | Out  | In  | Out                   | In              |      |      | Signal Locations |
| S8     | (1)                 | (16) | (1) | (18)                  | (2)             | (1)  | (1)  | R9, R16, R43     |
| S9     | (3)                 | (15) | (2) | (17)                  | (3)             | (3)  | (3)  | R10, R27         |
| S10    | (5)                 | (14) | (3) | (16)                  | (4)             | (5)  | (5)  | R11, R28         |
| S11    | (7)                 | (13) | (4) | (15)                  | (5)             | (7)  | (7)  | R12, R29         |
| S12    | (9)                 | (12) | (5) | (14)                  | (6)             | (9)  | (9)  | R13, R30         |
| S13    | (11)                | (11) | (6) | (13)                  | (7)             | (11) | (11) | R14, R31         |
| S14    | (13)                | (10) | (7) | (12)                  | (8)             | (13) | (13) | R15, R32         |
| S15    | (15)                | (9)  | (8) | (11)                  | (9)             | (15) | (15) | R16, R33         |

<sup>&</sup>lt;sup>2</sup> A21 U1 is a buffer.

Table 7-22. Signals from A10 to Source LSB Pod Cable

|                |      | A    | 21 Conn | A10  |     |      |             |                  |  |
|----------------|------|------|---------|------|-----|------|-------------|------------------|--|
| Signal<br>Name | D    | P1   |         | RN2  |     | P4   | Digital I/O | A40 Test Board   |  |
|                |      | '    | in      | Out  | in  |      |             | Signal Locations |  |
| S0             | (1)  | (16) | (1)     | (18) | (2) | (1)  | (1)         | R1, R18, R35     |  |
| S1             | (3)  | (15) | (2)     | (17) | (3) | (3)  | (3)         | R2, R19, R36     |  |
| S2             | (5)  | (14) | (3)     | (16) | (4) | (5)  | (5)         | R3, R20, R37     |  |
| S3             | (7)  | (13) | (4)     | (15) | (5) | (7)  | (7)         | R4, R21, R38     |  |
| S4             | (9)  | (12) | (5)     | (14) | (6) | (9)  | (9)         | R5, R22, R39     |  |
| S5             | (11) | (11) | (6)     | (13) | (7) | (11) | (11)        | R6, R23, R40     |  |
| S6             | (13) | (10) | (7)     | (12) | (8) | (13) | (13)        | R7, R24, R41     |  |
| S7             | (15) | (9)  | (8)     | (11) | (9) | (15) | (15)        | R8, R25, R42     |  |

<sup>&</sup>lt;sup>3</sup> A21 U2 is a buffer.

Table 7-23. Signals from A10 to Pod X Cable

| Signal Name          | A20 Connector Board |      |     |      |     |     | A10<br>Digital<br>1/0 | A40 Test Board   |
|----------------------|---------------------|------|-----|------|-----|-----|-----------------------|------------------|
|                      |                     | Р3.  |     | RN1  |     | P4  | P103                  |                  |
| ·                    |                     | Out  | In  | Out  | In  |     |                       | Signal Locations |
| SRC CLK <sup>5</sup> | (1)                 | (15) | (2) | (18) | (2) | (1) | (1)                   | R17, R34, R44    |
| SCE DAV              | (3)                 | (14) | (3) | (17) | (3) | (3) | (3)                   | nc               |
| SCE ENB              | (5)                 | (13) | (4) | (16) | (4) | (5) | (5)                   | nc               |
| SMP CLK              | (7)                 | (12) | (5) | (15) | (5) | (7) | (7)                   | nċ               |

<sup>&</sup>lt;sup>4</sup> A20 U1 is a buffer.

<sup>&</sup>lt;sup>5</sup> The SRC CLK is only connected when J8 is in Normal (N position.

#### **Control Line Tests**

Control line failures can cause false error codes and multiple failure messages. This procedure determines if a control line is defective.

#### **Control Line Test ONE**

- 1. Press the line switch OFF.
- 2. Place the A2 System CPU on the extender board.
- 3. Press the line switch ON.
- 4. Verify the RESETL line is a TTL level high at test point A2 U604-16.
- 5. After the power-up sequence is completed, use a logic probe to verify the signals in table 7-24 are toggling between TTL level high and TTL level low.
- 6. If a line is TTL level stays low, go to "Control Line Test TWO".
- 7. Use table 7-24 to determine which assembly is defective.

Table 7-24. Control Lines Set #1

| Test<br>Location        | Signal    | In/Out | Probable Causes of Failure |
|-------------------------|-----------|--------|----------------------------|
| A2 U500-1               | IRQT4L    | A9 Out | A2 CPU, A9 FFT             |
| A2 U500-2               | IRQT5L    | A6 Out | A2 CPU, A6 D FLTR CONT     |
| A2 U500-3               | IRQT6L    | A8 Out | A2 CPU, A38 MEM            |
| A2 U500-13              | IRQT3L    | A7 Out | A2 CPU, A7 FPP             |
| Press any key to toggle | e KYBRDL. |        |                            |
| A2 U604-3               | KYBRDL    | A2 Out | A2 CPU, A15 KFYBD          |
| A2 U604-5               | ASL       | A2 Out | Any assembly on the system |
| A2 U604-7               | WRITEL    | A2 Out | bus:                       |
| A2 U604-9               | UDSL      | A2 Out | A1 DGTL SCE, A2 CPU        |
| A2 U604-12              | LDSL      | A2 Out | A4 LO, A6 D FLTR CONT      |
| A2 U604-14              | VIOL      | A2 Out | A9 FFP, A10 DGTL I/O       |
| A2 U508-4               | DTACKL    | A2 In  | A15 KEYBD, A38 MEM         |
| A2 P1-11                | ENBLL     | A2 Out | A1 DGTL SCE, A2 CPU,       |
| A2 U604-18              | VMAL      | A2 Out | A38 MEM, A4 LO             |
| A2 U508-2               | VPAL      | A4 Out | A2 CPU, A4 LO              |
| A2 U508-5               | MR68L     | A2 Out | A2 CPU, A38 MEM            |

#### **Control Line Test TWO**

- 1. Press the line switch OFF.
- 2. Remove one of the assemblies listed in table 7-25.
- 3. Press the line switch ON.
- 4. If the failing control line in table 7-24 is now toggling or TTL level high, the assembly removed is causing the failure.
- 5. Press the line switch OFF.
- 6. Replace the assembly.
- 7. Repeat steps 1 through 6 for the each of the remaining assemblies in table 7-25.

Table 7-25. Failing Control Line Assemblies

| Reference<br>Designation | Description               |  |  |  |  |
|--------------------------|---------------------------|--|--|--|--|
| A1                       | Digital Source            |  |  |  |  |
| A6                       | Digital Filter Controller |  |  |  |  |
| A7                       | FPP                       |  |  |  |  |
| A9                       | FFT                       |  |  |  |  |
| A15                      | Keyboard <sup>2</sup>     |  |  |  |  |
| A38                      | Memory <sup>3</sup>       |  |  |  |  |

<sup>&</sup>lt;sup>1</sup>A5 Digital Filter must also be removed.

<sup>&</sup>lt;sup>2</sup>Disconnect cable W10 from the A14 Mother board.

<sup>&</sup>lt;sup>3</sup>MR68L should remain low with the Memory removed.

## **Control Line Test THREE**

- 1. Press the line switch OFF.
- 2. Replace the A2 System CPU in its card nest. Place the A6 Digital Filter Controller on the extender board.
- 3. Press the line switch ON.
- 4. After the power-up sequence is completed, use a logic probe to verify the signals in table 7-26 are toggling between TTL level high and TTL level low.

Table 7-26. Control Lines Set #3

| Test Location | Signal  | In/Out |
|---------------|---------|--------|
| A6 U304-6     | BLDSL   | A6 Out |
| A6 U304-7     | BWRITEL | A6 Out |
| A6 U304-9     | BUDSL   | A6 Out |

If any of the lines are not toggling, replace A6 assembly. Refer to table 4-1 for the HP part number.

5. Replace the A6 Digital Filter Controller in its card nest.

# **Isolating Trigger Failures**

This procedure assumes the instrument operates correctly in the free run mode, but does not operate correctly in the trigger mode. Follow this procedure starting with the "Start" procedure to isolate the defective assembly.

## Isolating Trigger Failures Procedure ONE - Start

- 1. If the trigger operates correctly except in external (EXT) trigger mode, start with the A31 Trigger troubleshooting procedures in Section VIII.
- 2. Press the HP 3563A keys as follows:

| Control SPCL |                    |          |
|--------------|--------------------|----------|
| FCTN         | <br>SERVIC<br>TEST | <br>TEST |
|              |                    | ALL      |

- 3. If any self-tests fail (except for calibration failures) go to the "Test All" procedures in this section.
- 4. Press the HP 3563A keys as follows:

| Control SPCL FCTN | ••••• | SERVIC<br>TEST | <br>TEST<br>SOURCE | <br>SOURCE |
|-------------------|-------|----------------|--------------------|------------|
|                   |       | •              |                    | MAIN       |

5. When this test is finished press the keys as follows:



- 6. If the Source Main test or the Digital Source F/E Interface test fails, start with the A1 Digital Source troubleshooting procedures in Section VIII.
- 7. If the trigger operates correctly except in remote HP-IB trigger mode and the A1 Digital Source self-tests passed, with the A2,A22 System CPU HP-IB troubleshooting procedures in Section VIII.

## **Isolating Trigger Failures Procedure TWO**

- 1. Use a BNC Tee to connect the front panel source output to Channel 1 and Channel 2.
- 2. Press the HP 3563A keys as follows:

| [ Control ] PRESET            |   |                                 |                              |              |
|-------------------------------|---|---------------------------------|------------------------------|--------------|
| Measuremen SOURCE             |   | SOURCE<br>TYPE<br>FIXED<br>SINE | <br>SOURCE<br>LEVEL<br>125Hz | <br>5V       |
| Input Setup<br>SELECT<br>TRIG | 1 | CHAN 1<br>INPUT                 |                              |              |
| │ Display │<br>MEAS<br>DISP   |   | FILTRD<br>INPUT                 | <br>TIME<br>REC1             |              |
|                               |   | SCALE                           | <br>Y FIXD<br>SCALE          | <br>- 7, 7 \ |

Refer to figure 7-13 to verify the correct result.

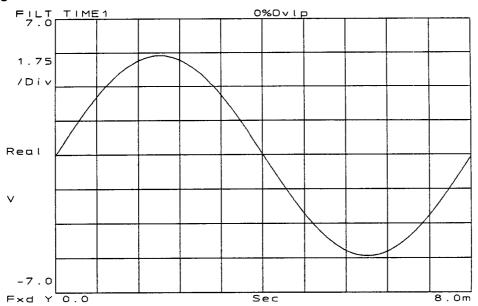



Figure 7-13. Triggered Sine Wave

# **Isolating Trigger Failures Procedure THREE**

Press the HP 3563A keys as follows:

| [ Measureme    | ent ] |                 |   |               |         |               |
|----------------|-------|-----------------|---|---------------|---------|---------------|
| SOURCE         |       | SOURCE<br>LEVEL |   | 5V            |         |               |
|                | ••••• | SOURCE<br>TYPE  |   | FIXED<br>SINE | • • • • | <b>125</b> Hz |
| [ Input Setup  | 1     |                 |   |               |         |               |
| SELECT<br>TRIG |       | CHAN 2<br>INPUT | · |               |         |               |
| Display DISP   | ••••• | FILTRD<br>INPUT |   | TIME<br>REC 2 |         |               |
| Display SCALE  | ••••  | Y FIXD<br>SCALE |   | -7,7V         |         |               |

Refer to figure 7-13 to verify the correct result.

## **Isolating Trigger Failures Procedure FOUR**

Use a scope to verify the signals TRIG IN and TRIGRO are operating correctly as shown in Waveform #14 (refer to table 7-31). If these signals are correct go to "Isolating Trigger Failures Procedure EIGHT".

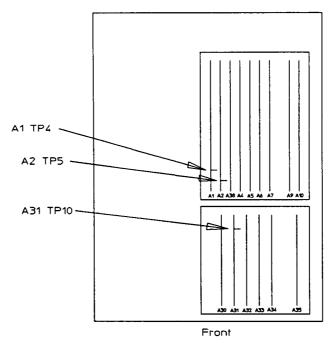



Figure 7-14. HP 3563A Top View, Cover Removed

## Isolating Trigger Failures Procedure FIVE

- 1. Press the line switch OFF.
- 2. Put A32 ADC 1 on the extender board.
- 3. Press the line switch ON.
- 4. Repeat "Isolating Trigger Failures Procedure TWO."
- 5. Use a scope to verify the signals in table 7-27 are operating correctly.

Table 7-27. Trigger Signal Check #5

| Test Location* | Signal Name | In/Out  | Waveform # | Probable Causes                                                    |
|----------------|-------------|---------|------------|--------------------------------------------------------------------|
| A32 TP303      | TRIG1@      | A32 Out | #14        | A32 ADC 1 (go to A32 troubleshooting procedures in Section VIII)   |
| A31 TP3        | TRIGIN      | A31 Out | #14        | A31 Trigger (go to A31 troubleshooting procedures in Section VIII) |
| A10 TP109      | TRIGRO      | A10 Out | #14        | A10 Digital I/O                                                    |

<sup>\*</sup> Refer to figure 7-9.

## **Isolating Trigger Failures Procedure SIX**

- 1. Press the line switch OFF.
- 2. Put the A32 ADC 2 on the extender board.
- 3. Press the line switch ON.
- 4. Repeat "Isolating Trigger Failures Procedure THREE."
- 5. Use a scope to verify the signals in table 7-28 are operating correctly.

Table 7-28. Trigger Signal Check #6

| Test Location | Signal Name | In/Out  | Waveform # | Probable Causes                                                    |
|---------------|-------------|---------|------------|--------------------------------------------------------------------|
| A34 TP303     | TRIG2@      | A34 Out | #15        | A34 ADC 2 (go to A32 troubleshooting procedures in Section VIII)   |
| A31 TP3       | TRIGIN      | A31 Out | #15        | A31 Trigger (go to A31 troubleshooting procedures in Section VIII) |
| A10 TP109     | TRIGRO      | A10 Out | #15        | A10 Digital I/O                                                    |

## **Isolating Trigger Failures Procedure SEVEN**

Perform steps 1 through 4 as follows:

- 1. Press the line switch OFF.
- 2. Put A30 Analog Source on the extender board.
- 3. Press the line switch ON.
- 4. Use a scope to verify the signals in table 7-29 are operating correctly. Press A2 S1 (reset switch on A2 CPU) to view the STIM@ and CALTRIG waveforms (these signals are disabled when calibration is finished).

Table 7-29. Trigger Signal Check #7

| Test Location  | Signal Name     | In/Out  | Waveform # | Probable Causes                                                     |
|----------------|-----------------|---------|------------|---------------------------------------------------------------------|
| Press A2 S1 to | view waveforms. |         |            |                                                                     |
| A30 TP8        | STIM@           | A30 Out | #16        | A30 ANLG SCE (go to A30 troubleshooting procedures in Section VIII) |
| A30 J30-19     | CALTRIG         | A30 Out | #16        | A30 ANLG SCE go to A30 troubleshooting procedures in Section VIII)  |

## **Isolating Trigger Failures Procedure EIGHT**

- 1. Press the line switch OFF.
- 2. Put the A1 Digital Source on the extender board.
- 3. Press the line switch ON.
- 4. Repeat "Isolating Trigger Failures Procedure TWO."
- 5. Use a logic probe or scope to verify the signals in table 7-30 are toggling between TTL level high and TTL level low.

Table 7-30. Trigger Signal Check #8

| Test Location | Signal Name | In/Out |
|---------------|-------------|--------|
| A1 TP9        | BFST        | A1 Out |
| A1 J1-83      | ARML        | A6 Out |

- 6. Press the PAUSE/CONT key. ARML should now remain at TTL level high.
- 7. If ARML and BFST are operating correctly, replace the A6 assembly. See table 4-1 for the HP part number.
- 8. Press the line switch OFF.
- 9. Remove jumper A1 705. Connect a 6 Vpp, 1 kHz, 0 dc offset square wave to A1 J705-2.
- 10. Press the line switch ON.
- 11. Repeat "Isolating Trigger Failures Procedure TWO."

If the instrument now triggers (the waveform may move around on the display), replace the A6 assembly. See table 4-1 for the HP part number.

If the instrument still does not trigger, refer to the A1 Digital Source troubleshooting procedures in Section VIII.

# **Loop Mode and Intermittent Failures**

Loop mode is used for some signature analysis tests and to find intermittent failures. Many intermittent failures can be isolated by running the self-tests in this mode. When the loop mode is activated, the instrument continually repeats a test until power is cycled, the loop mode is shut off, or a failure is found. Most of the self-tests can be run in loop mode. Run one of the following self-tests in loop mode to help isolate intermittent failures:

| TEST ALL    | PROG ROM      |
|-------------|---------------|
| HP-IB DIAG  | SOURCE FUNCTN |
| FFT FUNCTN  | LO FUNCTN     |
| FPP FUNCTN  | FR END FUNCTN |
| GLOBAL RAM  | DIGTAL TEST   |
| ARBITRARY   | INTERN PATH   |
| INPUT POD 1 | INPUT POD 2   |
| QUALFR POD  |               |
|             |               |

#### Note •

Input Pod 1, Input Pod 2 and the Qualfr Pod self-tests require external hookups. Refer to "Digital Input Failures" in this section.

Use the "Spcl Fctn Key Map", figure 7-15, for the location of the service test keys.

# **Turning Loop Mode On/Off**

1. To turn the loop mode on, press the following HP 3563A softkeys:

| [ Input Setup ] CAL   | AUTO<br>ON <u>OFF</u> |                    |
|-----------------------|-----------------------|--------------------|
| [ Input Setup ] RANGE | 0 dBV                 |                    |
| Control SPCL FCTN     | SERVIC<br>TEST        | <br>LOOP<br>ON OFF |

- 2. Press the keys to start a self-test. Failures of a test are entered in the test log, the self-test stops, and the test log is displayed.
- 3. To turn the loop mode off press A2 S1 (reset switch on A2 CPU) or press the keys as follows:

RETURN ..... LOOP ON <u>OFF</u>

# Note

Test All may fail the Channel 1 or Channel 2 zoom noise test after running for approximately 48 hours. The DFA Functional Test (DFA Functn) Filter Test (Filter Test) may fail the zoom noise test after running for approximately 2 hours. No other tests fails. This failure message results from a software anomaly and does not mean there is a hardware failure. Here is an example of the Test All failure message resulting from this problem.

| Floating Point Pro | ocessor                | Passes<br>Passes |
|--------------------|------------------------|------------------|
| Global Rain        | Channel 1 Zoom, Signal | Passes           |
|                    | Channel 2 Zoom, Signal | Passes           |
|                    | Channel 1 Zoom, Noise  | Passes           |
|                    | Channel 2 Zoom, Noise  | <b>FAILS</b>     |
| Zoom Test          |                        | <b>FAILS</b>     |
| Source Test        |                        | Passes           |
| Front End          |                        | Passes           |
| Calibration        |                        | Passes           |
| DFA Filtered Cha   | annel Interrupt        | Passes           |
| DFA Unfiltered (   | Channel Interrupt      | Passes           |
| DFA Functional     | <b>Test</b>            | Passses          |

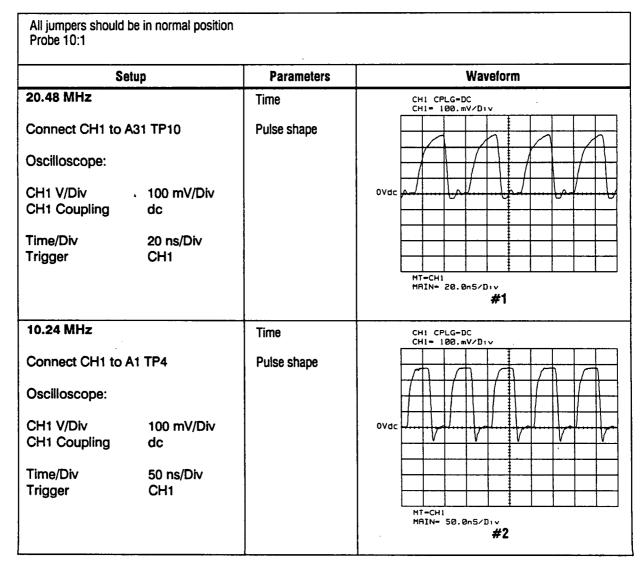
## **Troubleshooting Hints**

1. Common causes of intermittent failures are:

Cold solder joints
Loose cables
ICs loose in sockets
Loose screws on power supply
An assembly partially out of its card nest
Overheating

- 2. An intermittent failure in the instrument can be caused by an assembly's bottom connector that attaches the assembly to the A14 Mother Board. Check for loose pins on the connector.
- 3. If the instrument intermittently powers down or fails to power up, the most likely cause is the power supply control circuits (go to A18 troubleshooting procedures in Section VIII).
- 4. Intermittent keyboard failures can be caused by the ribbon cable (W10) between the A15 Keyboard and A14 Mother Board.
- 5. Intermittent digital input and output failures can be caused by the external ribbon cables or pods.

#### **Waveforms**


Use these waveforms to verify operation at various test points in the instrument. All oscilloscope measurements are taken using a 10:1 probe. Notes unique to a measurement are written next to the waveform.

## Warning



Service procedures described in this section are performed with the protective covers removed and power applied. Energy available at many points can, if contacted, result in personal injury. Servicing must be performed only by trained service personnel who are aware of the hazards involved (such as fire and electrical shock).

Table 7-31. Instrument Waveforms



All jumpers should be in normal position Probe 10:1

| Set                                                                | up                     | Parameters          | Waveform                       |
|--------------------------------------------------------------------|------------------------|---------------------|--------------------------------|
| 8 MHz  Connect CH1 to A  Oscilloscope: Bandwidth Limit:  CH1 V/Div |                        | Time<br>Pulse shape | CH1 CPLG-DC<br>CH1= 100.mV/DIV |
| CH1 Coupling Time/Div Trigger                                      | dc<br>50 ns/Div<br>CH1 |                     | MT-CH1 MAIN- 50. 0nS/D1v #3    |

Press the keys as follows to view CNTCLK:

SPCL FCTN ..... SERVIC TEST

..... LOOP <u>QN</u> OFF

TEST SOURCE ..... FR END

INTFCE

| CNTCLK           |                   | Time |      |  |      |    |   |  |   |                |   |
|------------------|-------------------|------|------|--|------|----|---|--|---|----------------|---|
| Connect CH1 to A | 1 TP11            |      |      |  |      |    |   |  |   |                | ] |
| Oscilloscope:    |                   |      |      |  |      |    |   |  |   |                | ĺ |
| Bandwidth Limit: | ON                |      |      |  |      |    |   |  |   | $\blacksquare$ |   |
| CH1 V/Div        | 100 mV/Div        |      |      |  |      |    |   |  |   |                |   |
| CH1 Coupling     | dc                |      | OVdc |  |      |    |   |  |   |                |   |
| Time/Div         | 10 <i>μ</i> s/Div |      |      |  |      |    |   |  |   |                |   |
| Trigger          | CH1               |      |      |  | <br> | r  | • |  | 1 |                | J |
|                  |                   |      |      |  |      | #4 |   |  |   |                |   |

Press A2 S1 (reset switch on A2 CPU) after viewing waveform.

| Se               | tup           | Parameters   |        | Wavef                                             | orm                                     |
|------------------|---------------|--------------|--------|---------------------------------------------------|-----------------------------------------|
| SAMP and DREQL   |               | Time         |        | CPLG=DC<br>= 200.mV/D:v                           | CH2 CPLG=BC<br>CH2= 200.mV/D1v          |
| Connect CH1 to A | A1 TP8        |              |        |                                                   |                                         |
| Connect CH2 to A | \1 J703-1     |              |        |                                                   | 1 1 1 1 1                               |
| Oscilloscope:    |               |              | 0Vdc   |                                                   |                                         |
|                  |               |              |        |                                                   |                                         |
| CH1 V/Div        | 200 mV/Div    |              |        |                                                   | ++++                                    |
| CH2 V/Div        | 200 mV/Div    |              |        |                                                   | + + + + + + + + + + + + + + + + + + + + |
| CH1 Coupling     | dc            |              |        | <del>-                                     </del> |                                         |
| CH2 Coupling     | dc            |              | Ovac   |                                                   | 1                                       |
| Ti /Di           | 4 - 101 -     |              |        | -CH1                                              | _                                       |
| Time/Div         | 1 μs/Div      |              | mH.    | N= 1.00uS/Di√<br>#                                | 5                                       |
| Trigger          | CH1           |              |        |                                                   |                                         |
| SYNC2 and COS    | •             | Time         |        |                                                   |                                         |
|                  |               |              |        | CHI CPLG=DC<br>CHI= 200.mV/D:v                    | CH2 CPLG=BC<br>CH2= 100.mV/D:v          |
| Connect CH1 to   | _             | Dulas abanas |        |                                                   |                                         |
| Connect CH2 to / | 44 1P24       | Pulse shapes |        |                                                   |                                         |
| Ossillassansı    |               |              | OVac   |                                                   | <del>┋</del>                            |
| Oscilloscope:    |               | :            | F      |                                                   |                                         |
| CH1 V/Div        | 200 mV/Div    |              |        | <del>-1-11-1</del>                                |                                         |
| CH2 V/Div        | 100 mV/Div    |              |        |                                                   |                                         |
| CH1 Coupling     | dc            |              | 0Vdc - |                                                   |                                         |
|                  |               | į.           |        | +                                                 | <del></del>                             |
|                  | de            | 1            | 1      | 1 1 1                                             | 1 1 1 1                                 |
| CH2 Coupling     | dc            |              |        | MT=CH1                                            |                                         |
|                  | dc<br>1 s/Div |              |        | MT=CH1<br>MAIN= 1.00uS/D:                         |                                         |

(NOTE: Press A2S2 to view waveforms)

All jumpers should be in normal position Probe 10:1 **Parameters** Waveform Setup Refer to the SYNC2 Test for setup (Isolating Front End Failures Procedure Six). COS (no DFA) Time Pulse shape Connect CH1 to A4 TP24 Oscilloscope: CH1 V/Div 100 mV/Div CH1 Coupling dc OVdc Time/Div  $1 \mu \text{ s/Div}$ Trigger CH1 #7 Press A2 S1 to view STIM@. STIM@ Time CH1 CPLG=DC CH1= 10.0mV/D:v Connect CH1 to A30 TP8 Pulse shape **Amplitude** Oscilloscope: Bandwidth Limit: ON OVdc CH1 V/Div 10 mV/Div CH1 Coupling dc Time/Div 5 μs/Div Trigger CH<sub>1</sub> MT-CH1 MRIN- 5.00uS/D:v #8 **NDAT and NLD** Time CH1 CPLG-DC CH1= 100.mV/D:v CH2 CPLG=DC CH2= 200.mV/D1v relationship Connect CH1 to A4 TP16 Connect CH2 to A4 TP17 Oscilloscope: OVdc CH1 V/Div 100 mV/Div CH2 V/Div 200 mV/Div CH1 Coupling dc CH1 Coupling dc OVdc Time/Div 500 ns/Div MT-CH1 MAIN- 500.nS/Div Trigger CH<sub>1</sub>

All jumpers should be in normal position Probe 10:1

| Set                                                                                                                                 | пb | Parameters           | Waveform                         |
|-------------------------------------------------------------------------------------------------------------------------------------|----|----------------------|----------------------------------|
| SYNC2 and NLD                                                                                                                       |    | Time relationship    | CH1 CPLG-DC                      |
| Connect CH1 to A Connect CH2 to A Oscilloscope: Bandwidth Limit: CH1 V/Div CH2 V/Div CH1 Coupling CH2 Coupling Time/Div Trigger CH2 |    |                      | OVdc MT=CH2 MAIN= 1.00uS/D1v #10 |
| NLD and NDCK  Connect CH1 to A Connect CH2 to A Oscilloscope:  CH1 V/Div CH2 V/Div CH1 Coupling CH2 Coupling Time/Div Trigger       |    | Time<br>Relationship | OVdc                             |

All jumpers should be in normal position Probe 10:1 **Parameters** Waveform Setup Press the keys as follows to view NSYNC and NCLK: SOURCE ..... SOURCE LEVEL ..... BURST CHIRP ..... SOURCE TYPE **NSYNC and NCLK** Time CH1 CPLG=DC CH1= 200.mV/D1v CH2 CPLG=DC CH2= 200.mV/D1v Connect CH1 to A1 J701-1 Connect CH2 to A1 J701-3 0Vdc Oscilloscope: CH1 V/Div 200 mV/Div CH2 V/Div 200 mV/Div CH1 Coupling dc 0Vdc **CH2 Coupling** dc MT=CH1 MAIN= 2.01m5/D1v Time/Div 2 ms/Div #12 Trigger CH<sub>1</sub> Refer to "Isolating Trigger Failures" for the HP 3563A input and key presses to view TRIGGER INPUT and TRIGIN. TRIGGER INPUT and TRIGIN Time CHI CPLG=DC CHI= 100 mV/D:v CH2 CPLG=DC CH2= 200 mV/D1v Relationship Connect CH1 to A31 TP1 Pulse shape Connect CH2 to A31 TP3 Oscilloscope: Bandwidth Limit: ON CH1 V/Div 100 mV/Div CH2 V/Div 200 mV/Div **CH1 Coupling** dc **CH2 Coupling** dc MT-CH2 MAIN- 2.00mS/D:v Time/Div 2 ms/Div #13 CH<sub>2</sub> Trigger

All jumpers should be in normal position Probe 10:1 Waveform **Parameters** Setup Refer to "Isolating Trigger Failures" for the HP 3563A input and key presses to view TRIG1@ and TRIGRO. TRIG1@ and TRIGRO Time Relationship CH1 CPLG=DC CH1= 100.mV/D1v CH2 CPLG-DC CH2- 200.mV/D1v Connect CH1 to A32 TP303 Pulse shape Connect CH2 to A31 TP3 or A10 **TP109** 0Vdc Oscilloscope: Bandwidth Limit: ON CH1 V/Div 100 mV/Div CH2 V/Div 200 mV/Div 0Vdc CH1 Coupling dc CH2 Coupling dc MT=CH2 MAIN- 990.uS/D:v Time/Div 1 ms/Div #14 **Trigger** CH<sub>2</sub> Refer to "Isolating Trigger Failures" for the HP 3563A input and key presses to view TRIG2@ and TRIGRO. TRIG2@ and TRIGRO Time Relationship CH1 CPLG-DC CH1= 100.mV/D:v CH2 CPLG-DC CH2= 200.mV/D:v Connect CH1 to A34 TP303 Connect CH2 to A31 TP3 or A10 Pulse shape **TP109** 0Vdc Oscilloscope: **Bandwidth Limit:** ON CH1 V/Div 100 mV/Div CH2 V/Div 200 mV/Div 0Vdc CH1 Coupling dc **CH2 Coupling** dc MT=CH2 MAIN= ImV/Div Time/Div 1 ms/Div #15 CH<sub>2</sub> Trigger

| Setup                                                                                                                          |                  | Parameters                          | Waveform                                                                      |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------|-------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Press A2 S1 to view                                                                                                            | STIM@ and CALTRI | G.                                  |                                                                               |  |  |  |  |  |  |  |
| STIM@ and CALT Connect CH1 to A Connect CH2 to A Oscilloscope:  Bandwidth Limit: CH1 V/Div CH2 V/Div CH1 Coupling CH2 Coupling | 30 TP8           | Time<br>Relationship<br>Pulse shape | CHI CPLG-DC CH2 CPLG-DC CH1= 10 mv/Div CH2= 200 mv/Div  HY-CH1 Main= 5 us/Div |  |  |  |  |  |  |  |
| Time/Div<br>Trigger                                                                                                            | 5 s/Div<br>CH1   |                                     | #16                                                                           |  |  |  |  |  |  |  |



Figure 7-15 illustrates the location of all the service test keys. Use the key map to find the key for a particular self-test. All keys marked in bold perform a self-test or a group of self-tests. Other soft keys are either used to reach the next level of soft keys or are used for other purposes such as adjustments and signature analysis.

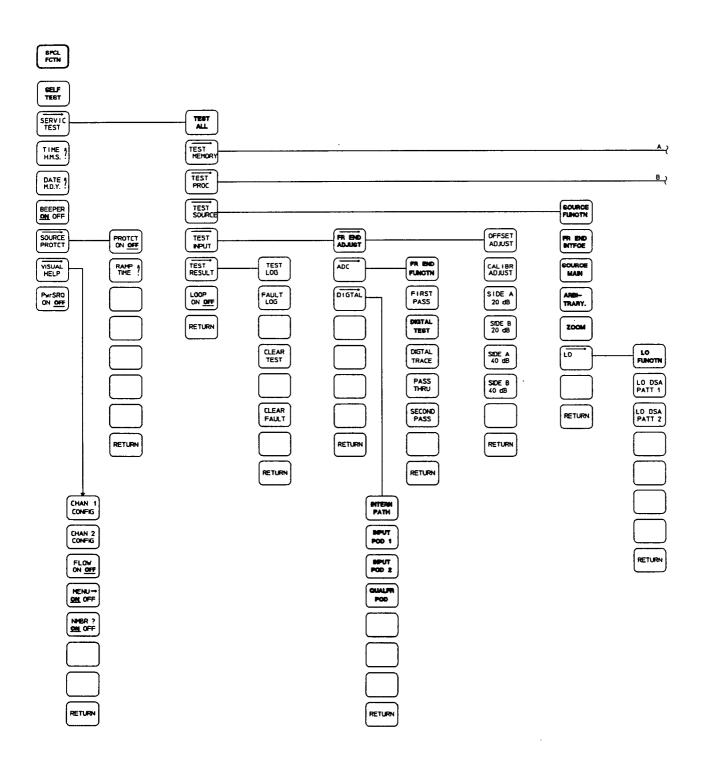
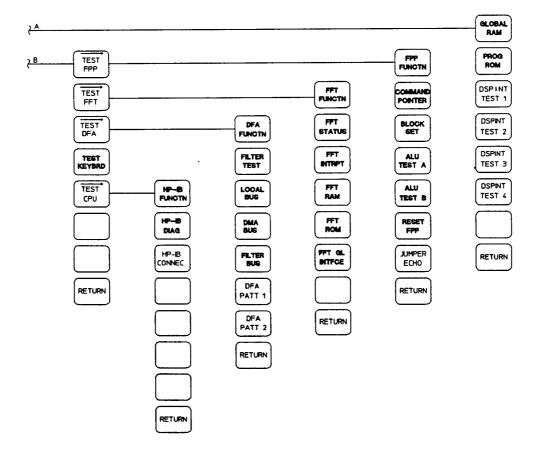




Figure 7-15. SPCL FCTN Key Map



## Test Log and Fault Log Descriptions

## **Test Log**

The test log is a record of the results of the last self-test run. Pass and fail messages are entered in the test log while a self-test is running. The results of the power-up tests are also entered in the test log. If a self-test stops before finishing or to verify the result of the power-up tests, the test log can be read by pressing the keys as follows:

| Control SPCL FCTN | <br>SERVICE<br>TEST | <br>TEST<br>RESULT | <br>TEST |
|-------------------|---------------------|--------------------|----------|
|                   |                     |                    | LOG      |

If a self-test fails, error messages are listed for each test, then the test name is listed. For example (figure 7-16), the Gate Array Test only failed on Channel 1 when the test was performed in the TEST ALL sequence.

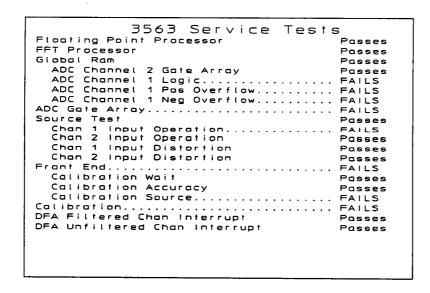



Figure 7-16. Test Log Example

#### **Fault Log**

The fault log lists the A2 System CPU run-time errors or discrepancies. It also gives the revision code of the software that is in the instrument. Only assemblies that use the system bus generate fault log error messages, however, an HP-IB programming error or a failure on any assembly may cause a fault log entry. Use the fault log as a supplement to the fault isolation procedure. To read the test log press the keys as follows:

| SPCL<br>FCTN | <br>SERVICE<br>TEST | <br>TEST<br>RESULT | <br>FAUL |
|--------------|---------------------|--------------------|----------|
|              |                     |                    | LOG      |

Fault log messages accumulate in the fault log until the log is cleared. Use table 7-32 to interpret fault log messages.

Note

Using beeper commands other than those specified in this manual may result in a "software fault" entry in the fault log.

Table 7-32. System CPU Address Map

| Data Address |           | Description                                   |                             |                                          |  |
|--------------|-----------|-----------------------------------------------|-----------------------------|------------------------------------------|--|
| From         | То        | Fault                                         | Assembly Generating Message | Possible Assemblies Failing              |  |
| 000000000    | 000007FFF | Monitor ROM                                   | A2                          | A2                                       |  |
| 00003D000    | 000040FFF | Program RAM                                   | A2                          | A2                                       |  |
| 000060000    | 00007FFFF | Data RAM                                      | A38                         | A2, A8                                   |  |
| 000D00000    | 000F3FFFF | Program ROM                                   | A38                         | A2, A3                                   |  |
| 000FF81E0    | 000FF81FF | Digital I/O                                   | A10                         | A2, A3, A10                              |  |
| OFFFF8001    | OFFFF800F | HP-IB                                         | A2                          | A2, A22                                  |  |
| OFFFF8011    | OFFFF801F | Programmable<br>Timer                         | A2                          | A2                                       |  |
| OFFFF8100    | OFFFF8104 | Display                                       | A38                         | A2, A8, A17                              |  |
| OFFFF8121    | OFFFF8127 | Keyboard                                      | A15                         | A2, A15                                  |  |
| OFFFF8140    | OFFFF8142 | FPP                                           | A7                          | A2, A7                                   |  |
| OFFFF8160    | OFFFF817E | IBC                                           | A6                          | A2, A5, A6, A31                          |  |
| OFFFF8180    | OFFFF818F | Front End<br>CONA Timeout<br>Trig Phase Error | A1                          | A1, A2, A3, A4, A5,<br>A6                |  |
| OFFFF81A1    | OFFFF81AF | LO<br>Lcl Oscil.                              | A4                          | A1, A2, A3, A4, A5,<br>A6, A31, A32, A34 |  |
| OFFFF81C0    | OFFFF81CE | FFT                                           | A9                          | A2, A9                                   |  |
| _            | _         | Cal Failure                                   | _                           | Any assembly                             |  |

# **Diagnostic Descriptions**

The self-tests consist of approximately 40 different tests that are run either in groups or individually to test a particular assembly, a function, or the entire instrument. The power-up tests are executed on turn-on, and the rest of the self-tests are invoked by pressing softkeys. This section describes the sequence of tests executed in groups and the SERVIC TEST softkey tests. Refer to table 7-4, "Power-up Test Codes", and table 7-6, "TEST ALL Messages", for a general description of the test result messages. For a detailed explanation of test result messages, refer to the troubleshooting paragraph for the failing assembly.

## **Power-Up Tests**

The power-up tests consist of two sets of tests, low-level and high-level. The low-level tests exercise the A2 System CPU, the A38 Memory (Program ROM and Global RAM), the global bus, and the system bus. Fault and pass codes for these assemblies are displayed using the A2 System CPU test LEDs (A2 DS3, A2 DS4). The high-level tests exercise the A9 FFT, A7 FPP, A5 DGTL FLTR, and A6 D FLTR CONT assemblies. Faults on these assemblies are displayed in the test log. The instrument performs a calibration if the power-up tests pass. Refer to figure 7-17 for the Power-Up sequence.

## **Service Test Softkeys**

This section describes the function of each of the service test softkeys. Refer to figure 7-15, "SPCL FCTN Key Map," for the location of each of the softkeys. Refer to Section VII and Section VIII for information on how to use the service test softkeys to isolate a failure.

#### **SELF TEST**

The SELF TEST key invokes a sequence of self-tests that thoroughly exercises the digital and analog hardware of the instrument. This test is designed to be used by the user to determine if the instrument is functioning correctly. If this self-test sequence fails, the failure is entered in the test log and "Self Test Fails" is displayed. Refer to figure 7-18 for the SELF TEST sequence.

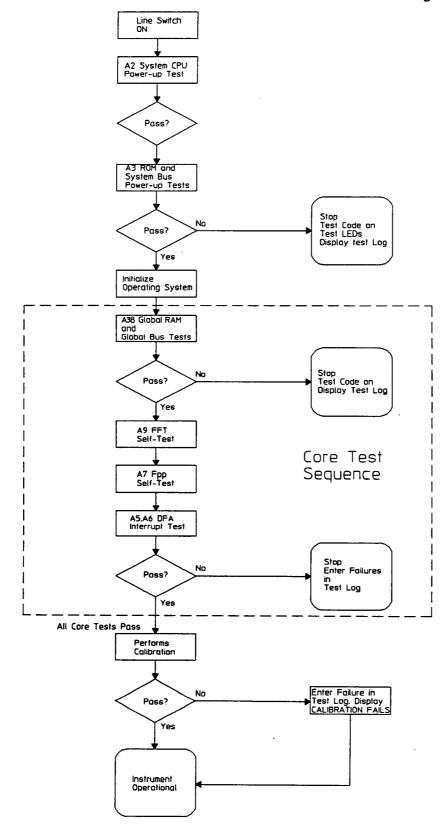



Figure 7-17. Power-Up Sequence Flowchart



Figure 7-18. Self Test Sequence Flowchart

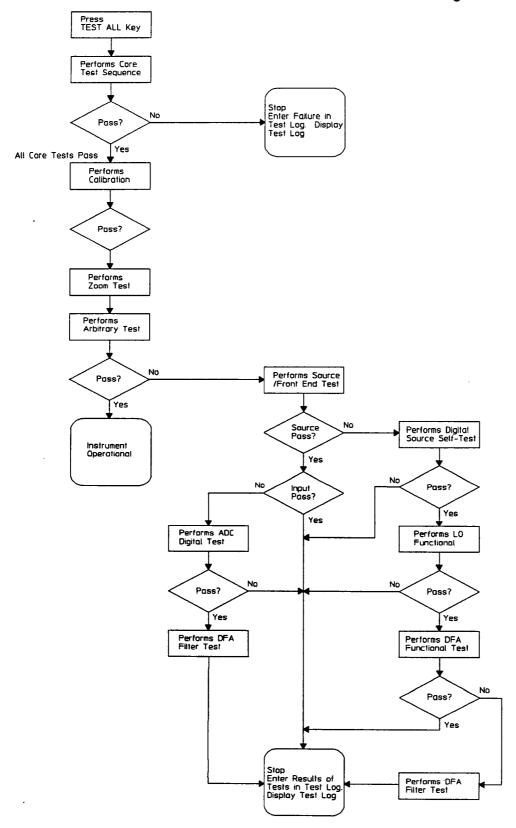



Figure 7-19. Test All Sequence Flowchart

Fault Isolation
Diagnostic Descriptions

#### **SERVIC TEST**

This softkey displays the first level of softkeys used in servicing the HP 3563A.

#### **TEST ALL**

The TEST ALL key invokes a sequence of self-tests that thoroughly exercises the digital and the analog hardware in the instrument. Each of the self-tests in the TEST ALL sequence can be run individually to help isolate the failure (Refer to the "Test All" discussion earlier in this section.) As the TEST ALL sequence is executed the results of each self-test is entered in the test log. When the sequence is completed the test log is displayed. Refer to figure 7-14 for the TEST ALL sequence.

## **TEST MEMORY**

This key displays the menu of softkeys used in testing the Global RAM section of the A38 Memory and the A17 Display Interface.

#### **GLOBAL RAM**

This key initiates the global functional test (this test is done on power-up). The global bus is tested by echoing data over the bus. If this test passes, a "marching pattern" test is done to TEST ALL of the Global memory. In the marching pattern test, data is written into each memory location and then read from the memory location. The global RAM test also isolates problems on the address lines and in the refresh circuits. To find address failures, the memory is initialized by writing the address of each location into the location. The contents are then read out and verified.

#### **PROGROM**

At this time, this test has no function. A complete test of the Program ROM is done on power-up.

## DSPINT TEST 1, DSPINT TEST 2, DSPINT TEST 4

These keys are used to isolated failures in the display interface circuits on the A38 Memory and A17 Display Interface assemblies. When one of these keys is pressed the display is disabled.

#### **TEST PROC**

This key displays the menu of softkeys used to test processing assemblies in the instrument.

#### **TEST FPP**

This key displays the menu of soft keys used to test the A7 Floating Point Processor. When a test is initiated, the A2 System CPU loads test data and FPP instructions into the global RAM section of the A38 Memory (except in the Reset FPP test) and commands the FPP to perform the test. After completing the test, the FPP sends the test results to global RAM and an interrupt (IRQT3L) to the system CPU. Any failed bits and the status of the interrupt are annunciated on the display. The "JUMPER ECHO" test requires jumper A7 J2B to be in the test position.

#### **TEST FFT**

This key displays the menu of softkeys used to test the A9 Fast Fourier Transform Processor. The FFT function test exercises the FFT functions by performing a forward and a reverse FFT, and exponential, Hanning, uniform, flattop, and user-defined windows on a known block of data. For a complete description of the FFT self-tests refer to "FFT Diagnostics" in Section VIII. The instrument needs to be preset before running any of the FFT self-tests. Several measurement setups can cause the FFT self-tests to fail by setting parameters used by the FFT to unknown values.

#### **TEST DFA**

This key displays the menu of softkeys used to test the A5 Digital Filter and the A6 Digital Filter Controller. The DFA functional test performs a zoom test using each channel on an internally generated square wave. This test does not use the inputs, ADCs, or analog source assemblies. The DFA PATT 1 test requires jumper A5 J7 to be set to test position. The DFA PATT 1 test is used for self-test and for signature analysis. The DFA PATT 2 is used only for signature analysis. When DFA PATT 2 is pressed "System Fault" is displayed.

## **TEST KEYBD**

This key tests the A15 Keyboard system interface circuits. The A2 System CPU reads the keyboard status register and compares the result with a known good value. At the same time, the front panel LEDs are flashed on, then off.

## **TEST CPU**

This key displays the menu of the softkeys used to test the HP-IB circuits on the A2 System CPU and the A22 HP-Interface Bus. The HP-IB FUNCTN key tests the General Purpose Interface Bus Adapter (A2 U412) by writing data to its registers and reading the data back. This test does not disturb devices connected to the HP-IB connector. The HP-IB DIAG key tests all of the HP-IB circuits and must not be run with devices attached to the HP-IB connector. The HP-IB CONNEC test is used to troubleshoot the A22 HP-IB connector. Refer to the "HP-IB Test" in the A2, A22 troubleshooting procedures in Section VIII for instructions.

#### **TEST SOURCE**

This key displays the menu of softkeys used in testing the A1 Digital Source, A4 Local Oscillator, and the A30 Analog Source.

#### **SOURCE FUNCTN**

The SOURCE FUNCTN key is used to test the A30 Analog Source (including the calibrator), the A32, A34 ADCs, and the A33, A35 Inputs. This test enables the analog source output and then the calibrator output into the input channels. The results are compared to known values. This test is the same test as the front end functional test (FR END FUNCTN).

#### FR END INTFCE

This key initiates the "Front End Interface" test (A1 Digital Source Diagnostics). The A2 System CPU loads the A1 Digital Source with test data for the front end interface circuits (control registers subblock). The system CPU then reads the contents of the digital source's status registers. Failed bits of the status registers are entered in the test log. The front end interface test verifies the circuits on the digital source used to set up the A30 Analog Source, A31 Trigger, A32, A34 ADCs, and the A33, Input assemblies. Refer to the A1 troubleshooting procedures in Section VIII.

#### **SOURCE MAIN**

This key initiates the Digital Source Self-test. The A2 System CPU loads the A1 Digital Source with test data to test most of the digital source's subblocks. The system CPU then reads the contents of the digital source's status registers. Failed bits of the status registers are entered in the test log. (Refer to the A1 troubleshooting procedures in Section VIII.)

#### **ARBITRARY**

This key initiates the four Arbitrary Source Tests. Known arbitrary waveforms are sent from the A10 Digital I/O to Channel 1. The test uses the filtered channel of the A5 Digital Filter board at 100 kHz. The address counters and pre-scaler are verified. The Zeros Test and Ones Test change a bit, perform 16 measurements then verify the bit for accuracy.

## ZOOM

This key initiates the Zoom Test. A zoomed measurement is done using a test signal from the A30 Analog Source. If this test passes, the A30 Analog Source main output, A4 LO, A5 Digital Filter, A6 Digital Filter Controller, A7 FPP, A9 FFT, and the A38 Global RAM are verified.

## LO

This key displays the menu of softkeys used in testing the Local Oscillator.

#### LO FUNCTN

This key initiates the LO Functional test. This test causes the LO to output phase and sine values to the A2 System CPU. The system CPU then compares the values to known good values. This test first executes using external clocks (SYNC2 and 10 MHz) and then runs again substituting internal clocks for the SYNC2 and 10 MHz clocks.

## LO DSA PATT 1

This key is used in the A4 Local Oscillator signature analysis tests.

#### LO DSA PATT2

This key is used in the A4 Local Oscillator signature analysis tests.

## **TEST INPUT**

This key displays the menu of softkeys used in testing and adjusting the A30 Analog Source, A32, A34 Analog Digital Converter and the A33, A35 Input assemblies.

#### **FR END ADJUST**

This key displays the menu of softkeys used in adjusting the instrument. For a complete description of the adjustments, refer to Section III, "Adjustments".

#### **ADC**

This key displays the menu of softkeys used in testing the A32, A34 Analog Digital Converter. The A5 Digital Filter status words are displayed when DIGTAL TRACE, PASS THRU, or SECOND PASS keys are pressed.

#### FR END FUNCTN

The FR END FUNCTN key is used to test the A30 Analog Source (including the calibrator), the A32, A34 ADCs, and the A33, A35 Inputs. This test enables the analog source output and then the calibrator output into the input channels. The results are compared to known values. This test is the same test as the Source Test (SOURCE FUNCTN).

## **FIRST PASS**

This key displays the result of the first conversion pass of the ADCs. Refer to the A32, A34 troubleshooting procedures in Section VIII.

## **DIGTAL TEST**

This key initiates a test of the ADC's digital section. The ADC Controller (A32 U602) outputs test patterns to the A5 Digital Filter. The A2 System CPU reads the results from the A5 Digital Filter and compares the results with known good values.

## **DIGTAL TRACE**

When this key is pressed, a test pattern is generated. By running the Digital Trace test in loop mode, a logic probe or oscilloscope can be used to trace digital signals on the A32, A34 assemblies.

## **PASS THRU**

When this key is pressed, the ADC's outputs are displayed in the test log.

#### SECOND PASS

This key displays the result of the second conversion pass of the ADCs. Refer to the A32, A34 troubleshooting procedures in Section VIII.

#### **DIGTAL**

This key displays the menu of softkeys used in testing the A1 Digital Source, the A5 Digital Filter and the A10 Digital I/O board.

## **INTERN PATH**

This key tests the internal path from the A1 Digital Source board to Channel 1. The A1 Digital Source, the A5 Digital Filter and the A10 Digital I/O are verified.

#### EXTERN POD 1

This key tests the external pod cable connections to Channel 1. This test requires external hookup with the A40 Test Board. The A10 Digital I/O and the A5 Digital Filter board are verified.

#### **EXTERN POD 2**

This key tests the external pod cable connections to Channel 2. This test requires external hookup with the A40 Test Board. The A10 Digital I/O and the A5 Digital Filter board are verified.

## **QUALFR POD**

This key tests the external qualifier pod cable connections. This test requires external hookup with the A40 Test Board. The A10 Digital I/O and the A5 Digital Filter board are verified.

#### **TEST RESULT**

This key displays the menu for the Test Log and the Fault Log. (Refer to the "Test Log and Fault Log Descriptions" in this section for a detailed description. The CLEAR TEST key is used to clear the Test Log (press twice to clear log). The CLEAR FAULT key is used to clear the Fault Log (press twice to clear log).

## LOOP ON OFF

This key activates and disables the loop mode. The loop mode is used for signature analysis tests and to find intermittent failures. Refer to "Loop Mode and Intermittent Failures" in this section for a complete description of the loop mode and how to use it.

## Self-Calibration

The HP 3563A has a stable internal calibration source which is used periodically to calibrate the input circuits. The calibration signal is generated on the A30 Analog Source circuit board. The self-calibration runs at the following times if the 'AUTO' calibration key is on: power-on, 8 minutes after power-on, 12 minutes after power-on, 40 minutes after power-on, and every two hours thereafter.

The self-calibration process consists of taking various measurements then generating calibration curves. These curves are used to correct measurements before they are displayed (the A7 FPP includes in its measurement process a complex multiply by a calibration correction curve). Since the calibration adjustments are done to the measurement after it is taken, the input assemblies remain unchanged by the calibration process (except for the value put in the common mode rejection DAC, refer to Section VI, "A5 Digital Filter" for a description of the common mode rejection DAC). The following measurements are taken to produce the calibration curves:

- Free-run measurement using the fixed sine from the analog source. This measurement is used to set the common mode rejection DAC on the A33, A35 Input assemblies.
- Single channel triggered measurements using the calibrator; Pseudo Random Noise Source subblock (PRN), the inverse of the PRN, and the 64 kHz square wave.
- Free-run frequency response measurement using the periodic chirp from the analog source
- Free-run measurement using the fixed sine from the analog source.

## **Displaying Calibration Curves**

1. Press the HP 3563A keys as follows to display an example of the calibration curves:

```
[ Control ]
                         RESET
  PRESET
[ Input Setup ]
  RANGE
                         0 dBVrms
[ Measurement ]
  WINDOW
                         UNIFRM
                         (NONE)
[ Display ]
  A&B
[ Control ]
  PAUSE/CONT
[ Control ]
  SPCL
 FCTN
                         BEEPER
              . . . . . .
                         ON OFF
                                                - 516
                                                                     ENTER
                         (toggle key)
[ Display ]
  SCALE
                         Y FIXD
                         SCALE
                                                - 1.5, 1.5 dB
```

Refer to figure 7-20 to see the example of the calibration curves. The range and source level can be varied to display calibration curves for different ranges.

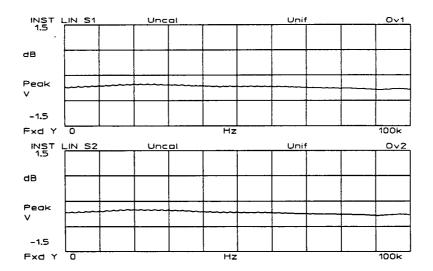



Figure 7-20. Calibration Curves

## **Calibration Failures**

#### Introduction

There are three type of calibration failures:

- Calibration Wait
- Calibration Accuracy
- Calibration Source

Calibration failure messages are entered in the test log on power-up and when self-test or "Test All" are run. A calibration wait failure means the calibration measurement did not complete within the specified time. A calibration accuracy failure means the magnitude or phase values exceeded the following calibration limits:

```
Single Channel Flatness

± 1.5 dBVpk,

Frequency Response

± 30 dBVpk, ± 40°

Single Channel Phase at 0°

± 1.5°
```

If the calibration accuracy failure occurs, the failure is entered in the test log and the calibration curves are used in measurement reading. Any assembly in the instrument can cause a calibration failure. If calibration fails, run the "Test All" diagnostic to isolate the failing assembly (presented earlier in this section). It is also possible that all the assemblies pass their self-tests and there still is a calibration failure.

If the assemblies self-tests pass except for a "Calibration Wait" failure, the measurement may not be triggering. Verify the trigger circuits in the instrument. See "Isolating Trigger Failures" earlier in this section.

If the assemblies self-tests pass except for a "Calibration Accuracy" failure, the following may be occurring:

- 1. The A30 Analog Source, A31 Trigger, A32, A34 ADCs, or the A33, A35 Input assemblies need adjustment (refer to Section III).
- 2. The A30 Analog Source, A31 Trigger, A32, A34 ADCs, or the A33, A35 Input assemblies are failing. Follow the "Isolating Front End Failures" procedure (earlier in this section) and look for amplitude variations.

If the assemblies self-tests pass except for a "Calibration Source' failure, check the instrument's trigger circuits (refer to "Isolating Trigger Failures") and the Pseudo Random Noise Source subblock on the A30 Analog Source.

#### **Calibration Failure Tests**

1. Only a few ranges and Channel 2 are used for calibration amplitude measurements (frequency response measurements are done using Channel 1 and Channel 2). The calibration curves for Channel 1 and the ranges not directly measured are calculated using the measured data. The ranges used in the measured data are as follows:

$$1, 8, 0, -1, -12, -13 \text{ dBVrms}$$

To check these ranges, use the "Displaying Calibration Curves" procedure.

- 2. To disable the calibrator, toggle the line switch then press softkey S8 (the last softkey) just after the display appears. The input channels can now be verified without using the calibrator. Input a source into Channel 1 and Channel 2. The waveforms now displayed are not corrected with the calibration curves.
- 3. To verify the calibrator is operating correctly, pull up A32, A33, A34, and A35 in their card nests. Perform the "Calibration Circuits Test" in Section VIII.



This procedure assumes Test All passes. Refer to the "Test All" procedures earlier in this section.



The HP 3563A has differential inputs. If the inputs are not terminated and a low range is set, the over range LEDs may be on. Some instruments are more sensitive to external noise than others.

## **Symptoms**

- 1. The instrument measures correctly when the range is set (auto-range is off).
- 2. An over range LED stays on when the instrument is at the correct range and measuring correctly.

These failures can be caused by one of the following conditions:

- An over range or half scale circuit in the input(A33, A35), ADC (A32, A34), or the digital filter (A5) assemblies is defective.
- There is noise in the input channels. The calibrator can correct for a small amount of noise. However, when operating the inputs at full scale at a low range, noise can cause the over range LEDs to come on.
- The LEDs are failing. If this is suspected, perform the "Keyboard Check" procedure in the "Initial Conditions Test".

## **Auto-Range Failure Tests**

## **Auto-Range Failure Test ONE**

Determines if the over-range, half-range circuits are functioning correctly.

- 1. Input a 2 Vrms, 1 kHz sine wave to both channels.
- 2. Press the HP 3563A keys as follows:

| Control PRESET    |       | RESET           |        |                       |
|-------------------|-------|-----------------|--------|-----------------------|
| Input Setup       | 1     | 3 Vr <b>m</b> s |        |                       |
| Control SPCL FCTN | ••••• | SERVICE<br>TEST | ······ | LOOP<br><u>QN</u> OFF |
|                   | ••••• | TEST<br>INPUT   | •••••  | ADC                   |
|                   |       |                 | •••••  | DIGTAL<br>TRACE       |

The half-range LED should be on and the digital filter status Word for both channels should be 01 (MSB is to the left, ignore leading zeros).

- 3. Increase the input level to 3 Vrms. Both the over-range and half-range LEDs should be on and the digital filter status words should binary 00011.
- 4. Decrease the input level to **0.5** Vrms. The over-range and half-range LEDs should be off and the digital filter status words should be 0.
- 5. If this test fails, perform "Auto-Range Failure Test THREE."

If this test passes, the over-range and half-scale circuits are most likely operating correctly; perform "Auto-Range Failure Test TWO".

## **Auto-Range Failure Test TWO**

Determines if the over-range, half-range problem is range related or caused by noise. The test inputs a sine wave at different voltage levels and sets the range for the sine wave level. Refer to table 6- for a chart of all possible ranges. The test starts with the  $-51 \, \mathrm{dBVrms}$  (2.82 mVrms) range.

- 1. Press the line switch OFF and remove the top cover.
- 2. Press the line switch ON.
- 3. Input a 2.8 mVrms, 1 kHz sine wave to the failing channel.
- 4. Press the HP 3563A keys as follows:

```
Control PRESET RESET

[ Input Setup ]

RANGE ..... 2.82 mVrms
```

5. Using an oscilloscope, look at the waveform at A32 (or A34) TP100.

If the signal is noise or distorted, troubleshoot the input (A33, A35) and ADC assemblies (A32, A34). Start with "Isolating Front End Failures Procedure Five — Input, ADC, and Digital I/O Failures".

If the -51 dBVrms range is okay, verify ranges -36 dBVrms (15.8 mVrms), -5 dBVrms (0.5623 Vrms), 0 dBVrms (1 Vrms), and 9 dBVrms (2.818 Vrms). If the problem has not been isolated, continue with "Auto-Range Failure Test THREE".

## **Auto-Range Failure Test THREE**

Determines if the problem is in the input section or the digital section of the instrument.

- 1. Press the line switch OFF, remove the top cover and the digital board retainer bar.
- 2. Place the A5 Digital Filter assembly on the extender board.

Control Systems Analyzer

3. Terminate both input channels by using two 50  $\Omega$  feedthrough terminations and ground the BNC shells as shown in figure 7-21.

Channel 1 Channel 2



Feedthrough Termination 4. Press the HP 3563A keys as follows:

| PRESET            | •••••    | RESET           |                           |
|-------------------|----------|-----------------|---------------------------|
| Control SPCL FCTN |          | SERVICE<br>TEST | <br>LOOP<br><u>ON</u> OFF |
|                   | TE<br>In | EST<br>IPUT     | <br>ADC                   |
|                   |          |                 | <br>DIGTAL<br>TRACE       |

5. Note the value of the digital filter status word for each channel. The values should be 0.

The over-range and half-range LEDs should be off. If the instrument is not failing at the -51 dBVrms range, set the instrument to the failing range.

- 6. Check A5 U306 pins 2, 4, 11, and 13. Each of these signals should be TTL level low. If any of the signals are TTL level high or a changing value, troubleshoot the input (A33, A35) and ADC assemblies (A32, A34). Start with "Isolating Front End Failures Procedure FIVE Input, ADC, and Digital I/O Failures".
- 7. Press the line switch off and set jumpers A5 J2 and A5 J3 in test (T) position.
- 8. Press the line switch on. A system fault occurs with these jumpers in test position.
- 9. Repeat step 4.
- 10. If the digital filter status words changed or the failure moved from one channel to the other channel, troubleshoot the input(A33, A35) and ADC assemblies (A32, A34). Start with "Isolating Front End Failures Procedure FIVE Input, ADC, and Digital I/O Failures".
- 11. If the digital filter status words remain the same, the most likely cause of the failure is the A5 Digital Filter Assembly.

## **Table of Contents**

| Section VIII: Service                             |            |
|---------------------------------------------------|------------|
| How to Use This Section                           | 2          |
| General Schematic Notes                           |            |
| A1 Digital Source8-9                              | •          |
| Digital Source Diagnostics                        | LO         |
| Subblock Verification Tests                       | L3         |
| Multiple Failures Test                            | 21         |
| Effective Sample Rate Generator Test8-2           | 23         |
| Digital Source Signature Analysis Tests           | 24         |
| Digital Source Waveforms8-3                       | 34         |
| Digital Source After-Repair Adjustments and Tests | 38         |
| A1 Schematic                                      |            |
| A2, A22 System CPU/HP-IB8-3                       | 39         |
| CPU/HP-IB Initial Conditions Test                 | 12         |
| System CPU Diagnostics                            | 43         |
| CPU Global Bus Interface Test8-4                  | 45         |
| HP-IB Test                                        | 45         |
| Nonvolatile RAM Test                              | 47         |
| CPU Signature Analysis Tests                      | 47         |
| CPU Signal Waveforms                              | 50         |
| CPU/HP-IB After-Repair Adjustments and Tests      | 52         |
| A2, A22 Schematic                                 |            |
| A9 Fast Fourier Transform (FFT) Processor8-       | 53         |
| FFT Diagnostics                                   | 55         |
| FFT Signature Analysis Tests                      | 57         |
| FFT Signal Waveforms                              | <b>7</b> 0 |
| FFT After-Repair Adjustments and Tests8-          | 72         |
| A9 Schematic                                      |            |
| A14 Mother Board                                  | 73         |
|                                                   |            |
| A15 Keyboard                                      | Q1         |
| Key Check Test                                    |            |
| Disconnecting W10                                 | 24         |
| LEDs Test                                         |            |
| Key Echo Test                                     |            |
| RPG Test                                          |            |
| Removing the Keyboard8-                           |            |
| Keyboard Signature Analysis Tests                 |            |
| Keyboard After-Repair Adjustments and Tests       | 9          |
| A15 Schematic                                     | - (        |
| A18 Power Supply Assembly                         | oʻ         |
| Pioc Cumby Tact                                   | ر<br>16    |

| Primary Fault Test                                |           |
|---------------------------------------------------|-----------|
| Primary Circuit Test                              | <br>8-104 |
| Control Loop Test                                 | <br>8-106 |
| Slow Start Test                                   |           |
| Secondary Supplies Test                           | <br>8-108 |
| Over Temperature Circuit Test                     | <br>8-110 |
| Power Supply Signal Waveforms                     |           |
| Power Supply After-Repair Adjustments and Tests   |           |
| A18 Schematic                                     |           |
|                                                   | 0 117     |
| A30 Analog Source                                 | <br>8-11/ |
| Sine Wave Circuitry Test                          |           |
| DC Offset Test                                    |           |
| Calibration Circuits Test                         |           |
| Overload Detection Circuit Tests                  |           |
| Waveform and Spectrum Plots                       |           |
| Analog Source After-Repair Adjustments and Tests  | <br>8-134 |
| A30 Schematic                                     |           |
| A31 Trigger                                       | R-135     |
| VCXO Test                                         | <br>8-137 |
| Trigger Test                                      |           |
| REF IN Test                                       |           |
|                                                   |           |
| Trigger Assembly Waveforms                        |           |
| Trigger After-Repair Adjustments and Tests        | <br>8-148 |
| A31 Schematic                                     |           |
| A32, A34 Analog-to-Digital Converter (ADC)        |           |
| Signal Amplitudes vs Selected Range Test          | <br>8-151 |
| No Signal Through The Main Data Path              | <br>8-155 |
| Distortion                                        |           |
| Won't Trigger Off Individual Channel(s)           |           |
| Over Range and Half Scale Sensing Problems        |           |
| Offset D/A Converter                              |           |
| ADC After-Repair Adjustments and Tests            |           |
| A32, A34 Schematic                                | 0 200     |
| •                                                 | 0.450     |
| A33, A35 Input                                    |           |
| Signal Amplitudes Versus Range Setting Test       |           |
| Range Setting vs. Attenuator Setting              |           |
| Input Assembly Waveforms                          |           |
| Input Assembly After-Repair Adjustments and Tests | <br>8-166 |
| A33, A35 Schematic                                |           |
|                                                   |           |
| HP Digital Display                                | Q_167     |
| Preventive Maintenance                            |           |
| How to Use This Section                           |           |
|                                                   |           |
| HP Digital Display                                |           |
| A82 Vector Processor                              |           |
| A81 X-Y-Z Amplifier/Stroke Generator              |           |
| A83 Low Voltage Power Supply                      |           |
| A80 High Voltage Power Supply                     |           |
| A84 Memory                                        |           |
| Symbols and Labels                                | 8-178     |
| HP Digital Display Schematics                     |           |

## **Section VIII**

## **Service**

## Introduction

This section contains all the information required to isolate failures to the component level. Use this section after using the fault isolation procedures in Section VII. This section is used to isolate a failure to the subblock level. Each functional subblock consists of a small number of components, and the technician's expertise is relied upon to isolate the faulty component.

## Caution



Many of the parts are static sensitive. Use the appropriate precautions when removing, handling and installing all parts to avoid unneccessary damage.

## **How to Use This Section**

Start

After isolating the fault to an assembly, go to the troubleshooting procedures for that assembly. The troubleshooting information is listed in order of the circuit board assembly number, A1 through A33.

Reference

Use the component locators and schematics which follow each of the troubleshooting procedures.

For the location of cables and boards refer to figure 4-1 in Section IV.

For the circuit block diagrams refer to Section VI.

To understand the instrument's operation and signal mnemonics refer to Section VI.

**Keys** 

There are two types of keys on the HP 3563A, hardkeys and softkeys. Hardkeys are organized on the front panel according to functional group. See figure 8-1. In these procedures, the functional group is in brackets, the hardkeys appear in bold text, and the softkeys are in regular text.

## For example:

This example instructs you to first press the hardkey FREQ which is found in the Measurement group followed by the softkey FREQ SPAN. Next, enter the number 10 on the numeric keypad located in the Entry group. Specify the measurement unit by pressing the kHz softkey.

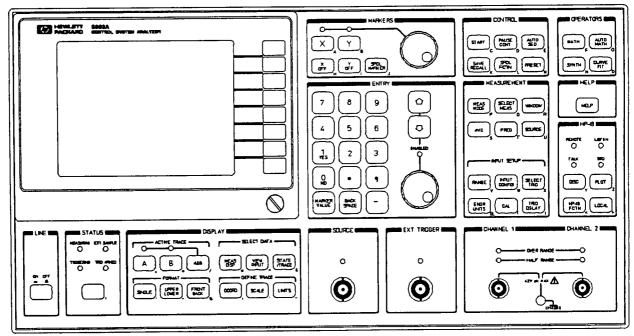



Figure 8-1. HP 3563A Front Panel Illustration

## Note

In the following test procedures, numeric values may require multiple keystrokes. In the previous example, the value 10 requires two keystrokes, 1 and 0. In the procedures, these keystrokes are represented as 10.

If you make an incorrect keystroke, press the previous hardkey. This will return you to a first level menu which allows you to continue with the procedure.

#### Loop Mode

The loop mode is used for some signatures analysis tests and to find intermittent failures. For description of the loop mode refer to "Loop Mode and Intermittent Failures" in Section VII.

# Note

After completing a test or repair, check that all jumpers are in the NORMAL or RUN position and that all cables are connected.

## **Recommended Test Equipment**

The recommended test equipment for troubleshooting is listed in table 1-2. Any item which meets or exceeds the critical requirements can be substituted for the model listed.

Positive logic convention is used in this manual unless otherwise noted. Positive logic conventions define a logic "1" or "High" as more positive voltage and a logic "0" or "Low" as the more negative voltage.

## Safety Considerations

The HP 3563A is a Safety Class 1 instrument (provided with a protective earth terminal). The instrument and manuals should be reviewed for safety markings and instructions before operation. Refer to the safety symbol table in the preface of this manual.

## Warning



Service procedures described in this section are performed with the protective covers removed and power applied. Hazardous voltage and energy available at many points can, if contacted, result in personal injury. Servicing must be performed only by trained service personnel who are aware of the hazards involved (such as fire and electrical shock).

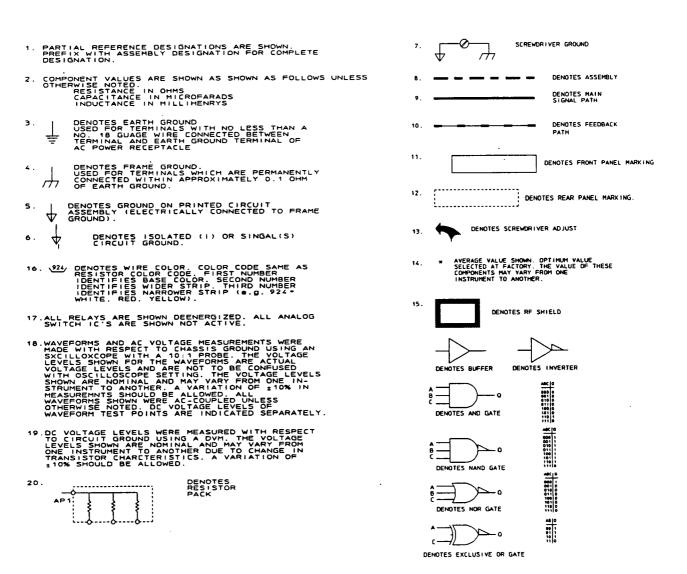
## Caution



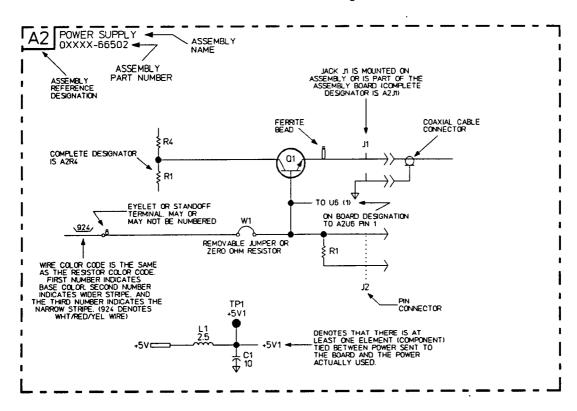
Do not insert or remove any circuit board in the HP 3563A with the line power turned on. Power transients caused by insertion or removal may damage the circuit boards. Many of the parts are static sensitive. Use the appropriate precautions when removing, handling and installing all parts to avoid unneccessary damage.

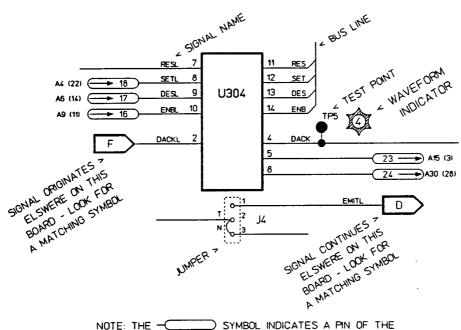
## Warning




230 Vdc is present in the A18 power supply assembly even with the line switch in the oil position and the power cord removed. Be extremely careful when working in the power supply area. This high voltage could cause serious personal injury if contacted. To discharge the capacitors holding this voltage perform steps 1 through 3.

- 1. Remove the power cord from the rear panel.
- 2. Remove the bottom cover and power supply shield.
- 3. Wait two minutes after turning the power off to allow the capacitors to discharge.


## **General Schematic Notes**


Each troubleshooting section contains the assembly's schematic diagrams which show the detailed circuits of the HP 3563A. Each schematic is assigned a numerical callout (A1 through A35) which matches the assembly's mnemonic. Refer to table 8-3 for a description of the mnemonics. The overall block diagram for the instrument is shown in figure 8-2 at the end of this section.

**Table 8-1. General Schematic Notes** 



**Table 8-2. Reference Designators** 





EXAMPLE: GRAMRSTL 12 --- A8 (119)

PIN 12 OF THE EDGE CONNECTOR ON THIS BOARD CARRIES THE SIGNAL GRAMRSTL TO PIN 119 OF THE EDGE CONNECTOR OF THE A8 BOARD VIA THE MOTHER BOARD.

Table 8-3. Assembly Mnemonics

| Mnemonics      | Description                         |
|----------------|-------------------------------------|
| A1 DGTL SCE    | Digital Source                      |
| A2 CPU/HP-IB   | System CPU/HP-IB                    |
| A4 LO          | Local Oscillator                    |
| A5 DGTL FLTR   | Digital Filter                      |
| A6 D FLTR CONT | Digital Filter Controller           |
| A7 FPP         | Floating Point Processor            |
| A9 FFT         | Fast Fourier Transform Processor    |
| A14 MOTHERBD   | Mother Board                        |
| A15 KEYBD      | Keyboard                            |
| A17 DSPL       | Display Interface                   |
| A18 PWR SPLY   | Power Supply                        |
| A20 CONN BRD 1 | Digital Connector Board             |
| A21 CONN BRD 2 | Digital Connector Board             |
| A22 HP-IB      | HP-Interface Bus                    |
| A30 ANLG SCE   | Analog Source                       |
| A31 TRIG       | Trigger                             |
| A32 ADC 1      | Analog Digital Converter, Channel 1 |
| A33 INPUT 1    | Input Channel 1                     |
| A34 ADC 2      | Analog Digital Converter, Channel 2 |
| A35 INPUT 2    | Input Channel 2                     |
| A38 MEM        | Memory Board                        |
| A40 TEST BRD   | Digital Test Board                  |
| A41 ANLG EXT   | Analog Extender Board               |
| A42 INPUT EXT  | Input/Analog Extender Board         |

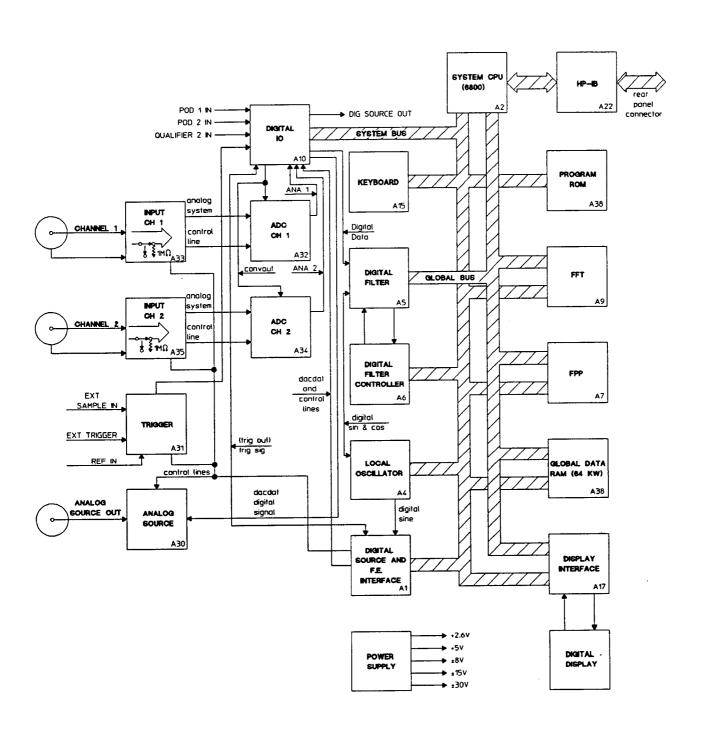



Figure 8-2. HP 3563A Block Diagram

## **A1 Digital Source**

The information in this section should be used to isolate faulty subblocks in the A1 Digital Source assembly. All procedures assume the Fault Isolation procedures of Section VII have been used to determine which board has failed, and the circuit descriptions of Section VI are understood.

## Warning



Service procedures described in this section are performed with the protective covers removed and power applied. Hazardous voltage and energy available at many points can, if contacted, result in personal injury. Servicing must be performed only by trained service personnel who are aware of the hazards involved (such as fire and electrical shock).

## Caution



Do not insert or remove any circuit board in the HP 3563A with the line power turned on. Power transients caused by insertion or removal may damage the circuit boards. Many of the parts are static sensitive. Use the appropriate precautions when removing, handling, and installing all parts to avoid unneccessary damage.

## **How to Use This Section**

Start The primary method for troubleshooting the digital source assembly is to use signature

analysis and the waveforms provided in the "Digital Source Signature Analysis Tests" and the "Digital Source Waveforms" sections which follow. Start troubleshooting by using the "Digital Source Diagnostics" procedures to isolate the failure to a subblock.

Reference The component locator and schematic follow the "After-Repair Adjustments and Tests"

table. For the location of cables and boards refer to figure 4-1 in Section IV.

**Verify** Use the oscilloscope waveforms in table 8-13 to see correct operation at various test

points in the assembly.

After-Repair Use table 8-14 to determine which adjustments and tests need to be done to complete

instrument service.

## **Digital Source Diagnostics**

The digital source is tested using two self-tests; the front end interface test and the source main test. When either of these tests are initiated, the test registers and control registers are loaded with test data and the TEST signal to the test registers goes low. The test is performed and the contents of the status registers is read and verified by the A2 System CPU. Any failed bits are annunciated on the display. These tests are also used in loop mode for signature analysis patterns.

1. To perform the self-tests, press the HP 3563A keys as follows:

| Control Contro | <br>SERVIC |       | TEST   |                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|--------|----------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TEST       | ••••• | SOURCE | <br>FR END<br>INTFCE |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       |        | <br>SOURCE           |

- 2. Refer to table 8-5 for single bit failures to determine the probable subblock failing.
- 3. Go to "Subblock Verification Tests" for multiple bit failures.
- 4. If both tests pass but a source function or a trigger mode is failing, use table 8-4 to determine the probable subblock failing.

Table 8-4. Digital Source Functions

| Function Failing or Defective                                                 | Probable Cause of Failure                              |
|-------------------------------------------------------------------------------|--------------------------------------------------------|
| Triggered Mode                                                                | Phase Resolution Circuit                               |
|                                                                               | (Go to "Digital Source Signature Analysis Tests")      |
| Single Channel Phase                                                          | Phase Resolution Circuit                               |
|                                                                               | (Go to "Digital Source Signature Analysis Tests")      |
| CNTCLK                                                                        | Control Registers                                      |
|                                                                               | (Go to "Digital Source Signature Analysis Test THREE") |
| Sine Wave Output                                                              | LO Input Receiver                                      |
|                                                                               | (Go to "Digital Source Signature Analysis Tests")      |
| Source Energy Measurement fails (2-41) but random noise operates at full span | Effective Sample Rate Generator                        |
|                                                                               | (Go to "Effective Sample Rate Generator Test")         |
| Random Noise Output                                                           | Noise Generator                                        |
|                                                                               | (Go to "Digital Source Signature Analysis Test FOUR")  |
| Burst Mode                                                                    | Burst Control Circuit                                  |
|                                                                               | (Go to "Digital Source Signature Analysis Test FIVE")  |
| SYNC OUT output                                                               | Burst Control Circuit                                  |
|                                                                               | (Refer to Waveform #5, Digital Source Waveforms)       |
| Periodic Chirp                                                                | Effective Sample Rate Generator                        |
|                                                                               | (Go to "Effective Sample Rate Generator Test")         |

Table 8-5. Digital Source Diagnostics

| Bit #    | Signal Name                     | From Component      | Subblock Returning Status Bit                                                                                             |
|----------|---------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------|
| Bit #    | Signal Name                     | From Component      | Probable subblock failing                                                                                                 |
| 0        | LDCH1L                          | U208-6              | Control Registers                                                                                                         |
| 1        | LDCH2L                          | U208-7              | (Go to "Digital Source Signature Analysis Test                                                                            |
| 2        | LDTRL                           | U208-5              | THREE")                                                                                                                   |
| 3        | LDSRCL                          | U208-4              | ,                                                                                                                         |
| 4        | SRCOUTFALTL                     | -                   | Status Registers .                                                                                                        |
| 5        | UNLOCK                          | _                   | (Go to "Digital Source Signature Analysis Tests")                                                                         |
| 6        | C10FSE                          | U101-7              | Timing Control Circuit                                                                                                    |
|          |                                 |                     | (Go to "Effrective Sample Rate Generator Test")                                                                           |
| 7        | CNTLD                           | U206-9              | Control Registers                                                                                                         |
|          |                                 |                     | (Go to "Digital Source Signature Analysis Test")                                                                          |
| 8        | NCLK                            | U202-12             | Burst Control Circuit                                                                                                     |
|          |                                 |                     | (Go to "Digital Source Signature Analysis Test                                                                            |
|          |                                 |                     | TWO")                                                                                                                     |
| 9        | DOUT                            | U209-6              | Multiplier                                                                                                                |
|          |                                 |                     | (Go to "Digital Source Signature Analysis Tests")                                                                         |
| 10       | DMID                            | U13-13              | LO Input Receiver                                                                                                         |
|          |                                 |                     | (Go to "Digital Source Signature Analysis Tests")                                                                         |
| 11       | NSR                             | U311-11             | Noise Generator                                                                                                           |
|          |                                 |                     | (Go to "Digital Source Signature Analysis Test FOUR")                                                                     |
| 12       | CNTRL BUSY                      | U106-8              | Control Registers                                                                                                         |
|          |                                 |                     | (Go to "Digital Source Signature Analysis Test THREE")                                                                    |
| 13       | BUSYL                           | U5-14               | Phase Resolution Circuit                                                                                                  |
| 14<br>15 | TRIGGERED ARMEDL                | U8-9<br>U5-15       | (Go to "Digital Source Signature Analysis Tests")                                                                         |
| _        | Digital Source<br>Counters Fail | U305, U7,U107, U108 | These counters are used in the following subblocks: Phase Resolution Circuit Timing Control Circuit Burst Control Circuit |
| 1        |                                 |                     | (Go to "Digital Source Signature Analysis Tests")                                                                         |

## **Subblock Verification Tests**

The digital source performs several functions including generating band-limited random noise, interfacing the local oscillator with the analog source, synchronizing trigger operations, and interfacing the front end assemblies (inputs, ADCs, trigger, and analog source) with the A2 System CPU. Most functions use only a few of the DS subblocks. To isolate the failure to a subblock, use table 8-6 after performing the following steps:

- 1. Connect the front panel source output to Channel 1.
- 2. Connect the rear panel SYNC OUT output to Channel 2.
- 3. Press the HP 3563A keys as follows:

| Control  <br>PRESET        |                | RESET           |                   |      |       |
|----------------------------|----------------|-----------------|-------------------|------|-------|
| Measurement RANGE          |                | 5.6 V           |                   |      |       |
| Measurement SOURCE         |                | SOURCE<br>LEVEL | <br>5 V           |      |       |
|                            |                | SOURCE<br>TYPE  | <br>FIXED<br>SINE | •••• | 1 kHz |
| 「Display ]<br>MEAS<br>DISP |                | FILTRD<br>INPUT | <br>TIME<br>REC1  |      |       |
| 「Display                   |                | Y FIXD<br>SCALE | <br>6, - 6 V      |      |       |
| Refer to figure            | e 8-3 to verif | y result.       |                   |      |       |



The free-run mode is used for most of the following waveforms. This is done to isolate failing functions to a subblock. When the trigger mode is not used, the waveforms move around on the display. The trigger mode is verified in step 7.

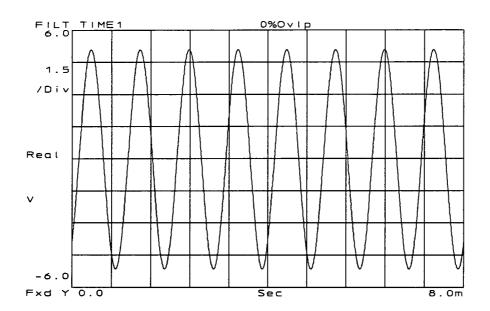



Figure 8-3. Sine Wave

If figure 8-3 is correct, the following subblocks are verified:

LO Input Receiver Multiplier Timing State Machine (U3)

4. Press the HP 3563A keys as follows:

| [ Measurement ] |        |            |
|-----------------|--------|------------|
| SOURCE          | SOURCE |            |
|                 | TYPE   | <br>RANDOM |
|                 |        | NOISE      |

Refer to figure 8-4 to verify result.

HP 3563A

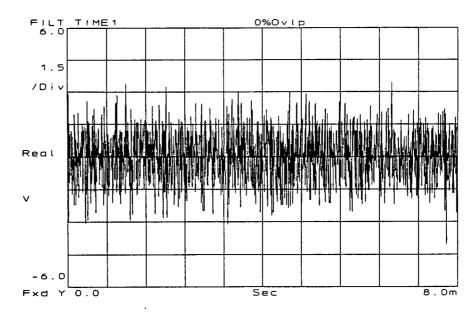



Figure 8-4. Random Noise

If figure 8-4 is correct the following subblock is verified:

**Noise Generator** 

5. The random noise should follow the frequency span as it is changed. The display should appear similar to figure 8-4 as the frequency span is changed. To change frequency spans, press the HP 3563A keys as follows:

| Measurement | : ] |      |            |
|-------------|-----|------|------------|
| FREQ        |     | FREQ |            |
|             |     | SPAN | <br>1 kHz  |
|             |     |      | <br>10 kHz |
|             |     |      | <br>50 kHz |

If the random noise follows the frequency span, the following subblock is verified:

Effective Sample Rate Generator

A1 Digital Source

6. Press the HP 3563A keys as follows:

| Measurement FREQ           | T<br> | MAX<br>SPAN     |                   |
|----------------------------|-------|-----------------|-------------------|
| 「Display                   |       |                 |                   |
| 「Display ]<br>MEAS<br>DISP |       | FILTRD<br>INPUT | <br>TIME<br>REC 2 |
| Display SCALE              |       | Y FIXD<br>SCALE | <br>6, -6         |
| 「Display                   |       |                 |                   |

SOURCE ..... BURST RANDOM

Refer to figure 8-5 to verify result.

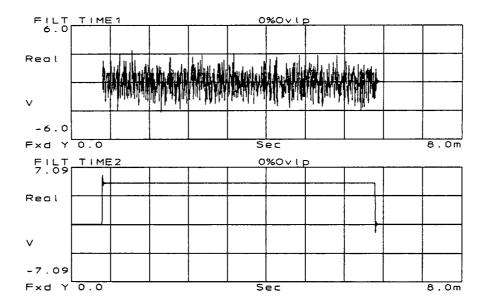



Figure 8-5. Burst Random #.1

7. Press the HP 3563A keys as follows:

| SOURCE<br>TYPE | <br>BURST<br>RANDOM |            | 25         |
|----------------|---------------------|------------|------------|
|                |                     |            | FNTFF      |
|                | TYPE                | TYPE BURST | TYPE BURST |

Refer to figure 8-6 to verify result.

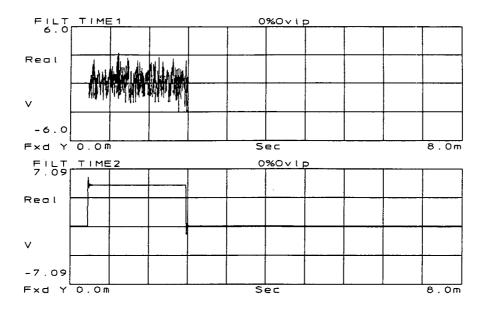



Figure 8-6. Burst Random # 2

If figures 8-5 and 8-6 are correct, the following subblock is verified: Burst Control Circuit

8. Press the HP 3563A keys as follows:

| Measurement   SOURCE       | SOURCE<br>TYPE | <br>FIXED<br>SINE | <br>1 kHz |
|----------------------------|----------------|-------------------|-----------|
| 「Input Setup ] SELECT TRIG | SOURCE<br>TRIG |                   |           |

The source trigger point may vary on the sine wave, but the trigger point on the SYNC OUT waveform should be the same as displayed in figure 8-7.

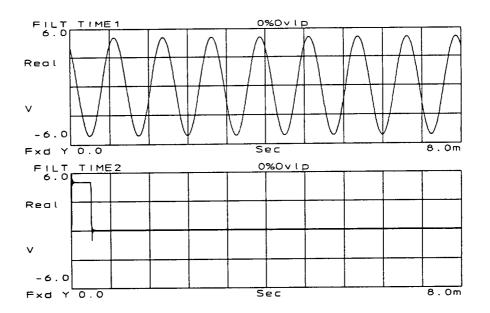



Figure 8-7. Source Trigger

If figure 8-7 is correct, the following subblock is verified:

Phase Resolution Circuit

Table 8-6. Digital Source Failures

| Test Results                                                                                                                                                                              | Most Likely Cause of Failure<br>Troubleshoot subblocks in order listed                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Digital Source Main Test Passes Digital Source Counters Passes Digital Source F/E Interface Fails                                                                                         | Control Registers  (Go to "Digital Source Signature Analysis Test THREE")                                                |
| Bits: 0,1,2,3,7, or 12  Digital Source F/E Interface Passes Digital Source Counters Pass or Fail Digital Source Main Test Fails Bits: 6,9,10                                              | Timing Control Circuit LO Input Receiver Multiplier  (Go to "Digital Source Signature Analysis Tests")                   |
| Digital Source F/E Interface Passes Digital Source Counters Pass Digital Source Main Test Fails Bits: 9,10  Functions: Sine Output is defective, but                                      | LO Input Receiver  (Go to "Digital Source Signature Analysis Tests")                                                     |
| Burst Random and SYNC OUT operate  Digital Source F/E Interface Passes Digital Source Counters Pass or Fail Digital Source Main Test Fails Bits: 9,10  Functions: Source Output Defective | Timing Control Circuit LO Input Receiver Multiplier  (Go to "Digital Source Signature Analysis Tests")                   |
| Random Noise Defective  Digital Source F/E Interface Passes Digital Source Counters Pass or Fail Digital Source Main Test Fails Bits: 13, 14, or 15                                       | Phase Resolution Circuit  (Go to "Digital Source Signature Analysis Tests")                                              |
| Digital Source F/E Interface Passes Digital Source Counters Pass or Fail Digital Source Main Test Fails Bits: 6,9,10 and one or more of the following bits: 11,12,13,14,15                | Programmable Counters Phase Resolution Circuit Timing Control Circuit  (Go to "Digital Source Signature Analysis Tests") |
| Digital Source F/E Interface Fails Digital Source Main Test Fails Bits: Multiple Failures                                                                                                 | DS Data Bus System Interace Device Decoder PAL or Buffer Programmable Counters                                           |
| Functions: No functions operate                                                                                                                                                           | Status Registers Test Registers Control Registers' Latches  (Go to "Multiple Failures Test")                             |

### **Multiple Failures Test**

This test verifies the DS data bus, the system interface, and the device decoder PAL and buffer.

- 1. Press the HP 3563A line switch OFF. Place the A1 Digital Source on the extender board.
- 2. Use a logic probe to verify the system interface lines are toggling between TTL level high and TTL level low. Use the following test locations:

U404-19

U403 pins 11, 13 through 18

3. Press the HP 3563A keys as follows:

| Control SPCL FCTN | <br>SERVICE<br>TEST | <br>LOOP<br><u>ON</u> OFF |        |
|-------------------|---------------------|---------------------------|--------|
|                   |                     | <br>TEST<br>SOURCE        | SOURCE |

4. To verify the device decoder PAL and buffer, use a logic probe to check the following signals are the correct TTL level:

| U303 pin 12 Toggling 13 Toggling 14 Toggling 15 Toggling 16 Toggling 17 High 18 Toggling 19 Toggling | U401 pin | 2 Toggling<br>7 Toggling<br>10 Toggling<br>11 Toggling |
|------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------|
|------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------|

5. Press the HP 3563A keys as follows:

| RETURN | <br>LOOP<br>ON <u>OFF</u> |                    |            |
|--------|---------------------------|--------------------|------------|
|        | <br>LOOP<br><u>ON</u> OFF | <br>TEST<br>SOURCE | <br>FR END |

Service HP 3563A

#### A1 Digital Source

6. Use a logic probe to verify the following signals are the correct TTL level:

U303 pin 12 High 13 Toggling 14 High 15 High 16 Toggling 17 Toggling 18 Toggling 19 Toggling

7. Use a logic to verify the DS data lines are togging (FR END INTFCE in loop mode). Some of the lines will toggle slowly. Use the following test locations:

U406 pins 1 and 11 through 19

U405 pins 11 through 18

8. Press A2 S1. After the power-up tests are complete, verify the following signals are the correct TTL level:

| Test Location | Signal Name | TTL Level |
|---------------|-------------|-----------|
| U203-2        | TEST        | Low       |
| U304-6        | NRSTL       | High      |
| U304-9        | BRST        | High      |
| U302-4        | RESETL      | High      |

9. If the fault has not been found, go to "Digital Source Signature Analysis Tests".

### **Effective Sample Rate Generator Test**

Use table 8-7 to verify the components in the effective sample rate generator. In table 8-7, a "0" represents a TTL level low and a "1" represents a TTL level high.

Set the frequency span by pressing the HP 3563A keys as follows:

 Measurement |
 FREQ

 FREQ
 SPAN

 To frequency span in table 8-7

Table 8-7. Effective Sample Rate Generator Test

| Frequency Span | DA<br>(U1-3) | DB<br>(U4-12) | DSEL<br>(U101-2) | TP12     |
|----------------|--------------|---------------|------------------|----------|
| 1 kHz          | 0            | 0             | 1                | 25.6 kHz |
| 3.125 kHz      | 0            | 1             | 1                | 80.0 kHz |
| 10 kHz         | 1 i          | lo            | 1                | 256 kHz  |
| 100 kHz        | 1 1          | 1             | 0                | 2.56 MHz |

If the fault has not been found, go to the next section, "Digital Source Signature Analysis Tests".

# **Digital Source Signature Analysis Tests**

Use these tests and the "Digital Source Waveforms" section which follows to isolate a failure on the digital source assembly. Only the components in the failing subblocks need to be tested.

### Digital Source Signature Analysis Test ONE

- 1. Press the HP 3563A line switch OFF.
- 2. Connect the Signature Analyzer as follows:

Table 8-8. DS Signature Analyzer Setup

| Signal | Polarity      | Connection |
|--------|---------------|------------|
| Ground | -             | A1 J2-1    |
| Clock  | Positive edge | A1 J2-3    |
| Stop   | Positive edge | A1 J2-4    |
| Start  | Positive edge | A1 J2-5    |

- 3. Press the HP 3563A line switch ON.
- 4. Press the HP 3563A keys as follows:

| ſ    | Control ]    |               |                 |             |                |            |                |
|------|--------------|---------------|-----------------|-------------|----------------|------------|----------------|
|      | FCTN         |               | SERVIC<br>TEST  |             | LOOP           |            |                |
|      |              |               | IESI            |             | ON OFF         |            |                |
|      |              |               |                 |             | TEST<br>SOURCE |            | SOURCE<br>MAIN |
| 5. V | When finishe | d with the te | st, turn the lo | op mode off | by pressing t  | he keys as | follows:       |
|      |              |               | RETURN          |             | LOOP<br>ON OFF |            |                |

Table 8-9. DS Signature Analysis Test ONE

### **Source Main Test**

Source Main Test in loop mode
Jumpers in normal (N) position: All jumpers
Signature Analyzer Setup: Refer to table 8-8
+5 V Signature = H166

| Component | Pin | Signature | Component | Pin | Signature |
|-----------|-----|-----------|-----------|-----|-----------|
| U1        | 11  | U233      | U7        | 8   | 0000      |
|           | 12  | 4009      |           | 9   | H166      |
|           | 13  | C9FH      |           | 10  | 5791      |
| ì         | 14  | 7467      |           | 12  | H166      |
|           | 15  | P09H      |           | 13  | H10F      |
| U2        | 11  | 0765      | U8        | 5   | 615F      |
|           | 12  | 9206      |           | 6   | CO3A      |
|           | 13  | HA1F      |           | 8   | 006A      |
|           | 14  | 6P24      |           | 9   | . H10F    |
|           | 15  | 41CF      | U9        | 5   | F4U5      |
| U3        | 12  | AU9H      |           | 6   | 1593      |
|           | 13  | 460C      |           | 8   | C88U      |
|           | 14  | 1203      |           | 9   | 69P9      |
|           | 15  | 49H2      | U10       | 3   | 93AH      |
|           | 16  | C26H      |           | 4   | 7003      |
|           | 17  | 2F90      |           | 5   | 01H4      |
|           | 18  | H166      |           | 6   | C93U      |
|           | 19  | 2FP4      |           | 10  | 654A      |
| U4        | 3   | 36UF      | 1         | 11  | 0C70      |
|           | 6   | H166      |           | 12  | CF6H      |
|           | 8   | OUH3      |           | 13  | 67P3      |
|           | 11  | HPC5      | U11       | 12  | 5612      |
| บ5        | 12  | H10F      | 1         | 13  | 2FU6      |
|           | 13  | 5791      |           | 14  | UHAP      |
| 1         | 14  | H10F      |           | 15  | 858P      |
| ł         | 15  | 9AUF      |           | 16  | 5612      |
|           | 16  | 6866      |           | 17  | 2FU6      |
|           | 17  | 97C4      |           | 18  | UHAP      |
|           | 18  | H166      | U12       | 12  | 127P      |
| ļ         | 19  | 3486      |           | 13  | 8340      |
| U6        | 3   | H10F      | 1         | 14  | 7716      |
| ]         | 6   | H10F      |           | 15  | 43A6      |
| ļ         | 8   | 21F2      |           | 16  | 127P      |
|           | 11  | H166      |           | 17  | 8340      |
|           | · • |           |           | 18  | 7716      |

# **DS Signature Analysis Test ONE continued**

| Component | Pin | Signature | Component | Pin | Signature |
|-----------|-----|-----------|-----------|-----|-----------|
| U13       | 13  | 5730      | U111      | 12  | 5612      |
| U101      | 7   | C2H9      |           | 13  | 2FU6      |
| U102      | 12  | 811H      | :         | 14  | UHAP      |
|           | 13  | 8315      |           | 15  | 858P      |
| ,         | 14  | C957      |           | 16  | 5612      |
|           | 15  | 02PU      |           | 17  | 2FU6      |
|           | 16  | 5UA9      |           | 18  | UHAP      |
|           | 17  | PA58      |           | 19  | 858P      |
|           | 18  | H166      | U112      | 12  | OPHC      |
|           | 19  | H166      |           | 13  | 8340      |
| U103      | 2   | 10AH      |           | 14  | 7716      |
| U105      | 4   | C367      |           | 15  | 43A6      |
|           | 5   | H166      |           | 16  | OPHC      |
|           | 7   | C367      |           | 17  | 8340      |
|           | 9   | 0000      |           | 18  | 7716      |
|           | 14  | 0000      |           | 19  | 43A6      |
| U106      | 5   | A75U      | U113      | 12  | 5UPH      |
|           | 6   | 7639      | U201      | 1   | 31UC      |
|           | 8   | 0000      |           | 4   | F6P2      |
|           | 9   | H166      |           | 10  | 304P      |
| U107      | 9   | H166      |           | 13  | 0000      |
|           | 10  | 5791      | U202      | 6   | HPC5      |
|           | 12  | H166      |           | 10  | 2066      |
|           | 13  | H10F      | U203      | 2   | H166      |
| U108      | 9   | H166      |           | 6   | 0000      |
|           | 10  | 5791      |           | 9   | 47HH      |
|           | 12  | H10F      |           | 12  | 465U      |
|           | 13  | H10F      | 1         | 16  | UA00      |
| U109      | 6   | H166      | U204      | 2   | C367      |
|           | 8   | H166      |           | 5   | 653U      |
| U110      | 3   | 1AUA      | 1         | 15  | P79A      |
| 05        | 4   | C4A8      |           | 16  | 0000      |
|           | 5   | 6381      | U209      | 6   | 7H1U      |
|           | 6   | 8815      | U302      | 4   | H166      |
|           | 10  | UHHU      |           | . 8 | H166      |
|           | 11  | F73A      |           | 10  | 2066      |
|           | 12  | HA48      |           |     |           |
|           | 13  | 54U1      |           |     |           |

### **DS Signature Analysis Test ONE continued**

| Component | Pin | Signature | Component | Pin | Signature |
|-----------|-----|-----------|-----------|-----|-----------|
| U304      | 1   | H166      | U306      | 6   | H166      |
|           | 2   | F11P      | U307      | 15  | 465U      |
|           | 5   | 7557      |           | 16  | 47HH      |
|           | 6   | 5FF3      | U308      | 4   | UA00      |
|           | 8   | 47HH      |           | 7   | 465U      |
|           | 12  | OUH3      | ,         | 12  | H166      |
|           | 13  | 465U      | U407      | 1   | H166      |
|           | 16  | HPC5      |           | 6   | 47HH      |
| Ì         | 17  | UA00      |           | 7   | 47HH      |
|           | 19  | 1078      | U409      | 12  | H166      |
| U305      | 2   | UA00      |           | 13  | FC55      |
|           | 4   | 465U      |           | 14  | H166      |
|           | 5   | 47HH      |           | 15  | 95C3      |
|           | 9   | A75U      |           | 16  | FAH9      |
|           | 10  | F2HP      |           | 17  | PFH9      |
|           | 11  | 5FF3      |           | 18  | H9C3      |
|           | 13  | A392      |           | 19  | 0000      |
|           | 14  | 811H      |           |     |           |
|           | 15  | F6P2      |           |     |           |
|           | 16  | 811H      |           |     |           |
|           | 17  | 77P7      |           |     |           |
| •         | 18  | 304P      |           |     |           |

#### Service A1 Digital Source

#### **Digital Source Signature Analysis Test TWO**

- 1. Press the HP 3563A line switch OFF.
- 2. Set A1 J3 to test position.
- 3. Press the HP 3563A line switch ON.
- 4. Press the HP 3563A keys as follows:

Control SPCL SERVIC TEST

LOOP ON OFF

.... TEST SOURCE

SOURCE

MAIN



DS Signature Analysis Test Two disables the feedback loop between the burst state machine (U102) and the burst control circuit's counters (U305).

### Table 8-10. DS Signature Analysis Test TWO

#### **Burst control Circuit**

Source Main Test in loop mode

Jumpers in normal (N) position: All jumpers except A1 J3

Jumpers in test (T) position: A1 J3

Signature Analyzer Setup: Refer to table 8-8

+5 V Signature = H166

| Component | Pin | Signature | Component | Pin | Signature |
|-----------|-----|-----------|-----------|-----|-----------|
| U102      | 12  | P75H      | U305      | 13  | 7U6P      |
|           | 13  | 1905      |           | 17  | PHF6      |
|           | 14  | 45C7      |           |     |           |
|           | 15  | 02PU      |           |     |           |
|           | 16  | 5UA9      | 1         |     |           |
| 17        | 17  | PA58      |           | -   | ł         |
|           | 18  | H166      |           |     |           |
|           | 19  | H166      |           |     |           |

5. Put jumper A1 J3 in normal (N) position.

# Digital Source Signature Analysis Test THREE

- 1. Set A1 J3 in normal (N) position.
- 2. Press A2 S1.
- 3. Press the HP 3563A keys as follows:

| Control     SPCL   FCTN | <br>SERVIC<br>TEST | <br>LOOP<br><u>ON</u> OFF |       |
|-------------------------|--------------------|---------------------------|-------|
|                         |                    | <br>TEST<br>SOURCE        | FR EN |

Table 8-11. DS Signature Analysis Test THREE

### Front End Interface Test

Front End Interface in loop mode

Jumpers in normal (N) position: All jumpers Signature Analyzer Setup: Refer to table 8-8

+5 V Signature = 088C

| Component | Pin | Signature        | Component | Pin | Signature |
|-----------|-----|------------------|-----------|-----|-----------|
| U4        | 6   | H359             | U205      | 11  | 088C      |
| U6        | 11  | H359             |           | 13  | FC45      |
| U104      | 3   | 6F76             | U206      | 7   | 6574      |
|           | 4   | HCH2             |           | 9   | 6HUU      |
|           | 5   | 528 <del>9</del> | U207      | 7   | F472      |
|           | 6   | P7CC             |           | 9   | FFU9      |
|           | 8   | 0000             | U208      | 4   | 95HH      |
|           | 9   | 3U2P             |           | 5   | 9905      |
|           | 10  | 7FP2             |           | 6   | UOH8      |
|           | 11  | 6H62             |           | 7   | UF01      |
| U106      | 8   | C49A             | U302      | 8   | CF11      |
| U109      | 3   | 083A             |           |     |           |
| U204      | 1   | 088C             |           |     |           |
|           | 2   | 0000             |           |     | 1         |
|           | 5   | 8FFP             |           |     |           |
|           | 6   | OUA9             |           |     |           |
|           | 9   | UO39             |           |     |           |
|           | 12  | сссз             |           |     |           |
|           | 15  | 0000             |           |     |           |
|           | 16  | 0000             |           |     |           |
|           | 19  | 0000             | <u> </u>  |     |           |

# Digital Source Signature Analysis Test FOUR

- 1. Press the HP 3563A line switch OFF.
- 2. Connect U311 pin 10 to TP15.
- 3. Press the HP 3563A line switch ON.
- 4. Press the HP 3563A keys as follows:

| Control SPCL FCTN | <br>SERVIC<br>TEST | <br>LOOP<br><u>ON</u> OFF |            |
|-------------------|--------------------|---------------------------|------------|
|                   |                    | <br>TEST<br>SOURCE        | <br>SOURCE |

Table 8-12. DS Signature Analysis Test FOUR

#### **Random Noise Generator Test**

Source Main Test in loop mode

Jumpers in normal (N) position: All Jumpers

Connect U311-10 to TP15
Signature Analyzer Setup: Refer to table 8-8

+5 V Signature = H166

| Component | Pin | Signature | Component | Pin | Signature |
|-----------|-----|-----------|-----------|-----|-----------|
| U208      | 9   | C139      | U313      | 9   | 7753      |
|           | 10  | A38A      |           | 10  | HH05      |
|           | 11  | U732      |           | 11  | 5C09      |
|           | 12  | 34P7      |           | 13  | 1PF9      |
|           | 13  | 1203      |           | 14  | 4F13      |
|           | 14  | 460C      |           | 15  | 2F4F      |
| U209      | 6   | 1764      |           | 16  | 09HF      |
| U210      | 2   | 0000      |           | 17  | 2F4F      |
|           | 5   | 2HP4      | U410      | 1   | 09FA      |
|           | 6   | 0000      |           | 2   | 4UH7      |
|           | 9   | 7P38      |           | 3   | 4UH7      |
|           | 12  | F2CC      |           | 4   | 18AC      |
|           | 15  | 08P1      |           | 5   | 18AC      |
|           | 16  | 4H58      |           | 6   | P9P2      |
|           | 19  | 1AA4      |           | 7   | P9P2      |
| U212      | 1   | 700       |           | 9   | 7A61      |
| ·         | 4   | 6HU7      |           | 15  | 09FA      |
|           | 10  | F4PF      | U411      | 1   | 09FA      |
|           | 13  | F322      |           | 2   | 4UH7      |
| U310      | 2 ` | CO3A      |           | 3   | 4UH7      |
|           | 5   | 8CO4      |           | 4   | 18AC      |
|           | 6   | 05FC      |           | 5   | 18AC      |
|           | 9   | 6678      |           | 6   | P9P2      |
|           | 12  | 9508      |           | 7   | P9P2      |
|           | 15  | 2777      |           | 9   | 5FU5      |
|           | 16  | 4CP8      |           | 15  | 09FA      |
|           | 19  | НОГИ      | U412      | 1   | 09FA      |
| U311      | 2   | 0000      | ]         | 2   | 4UH7      |
|           | 3   | A431      |           | 3   | 4UH7      |
|           | 11  | H166      |           | 4   | 18AC      |
| U312      | 1   | 23CH      | ]         | 5   | 18AC      |
|           | 4   | 60FC      |           | 6   | P9P2      |
|           | 10  | 37PF      |           | 7   | P9P2      |
|           | 13  | UA63      |           | 9   | 5828      |
|           |     | _         |           | 15  | 09FA      |

# **DS Signature Analysis Test FOUR continued**

| Component | Pin | Signature |
|-----------|-----|-----------|
| U413      | 1   | 09FA      |
|           | 2   | 4UH7      |
|           | 3   | 4UH7      |
|           | 4   | 18AC      |
|           | 5   | 18AC      |
|           | 6   | P9P2      |
|           | 7   | P9P2      |
|           | 9   | 8200      |
|           | 15  | 09FA      |

#### **Digital Source Waveforms**

The oscilloscope plots are used for troubleshooting the A1 Digital Source. Note that all the measurements are taken with a 10:1 probe. Other notes unique to a measurement are written next to the waveform.

### Warning



Service procedures described in this section are performed with the protective covers removed and power applied. Energy available at many points can, if contacted, result in personal injury.

Table 8-13. Digital Source Waveforms

All jumpers should be in normal position
Connect ground to A1 TP1 or A1 TP15
Probe: 10:1

Press the keys as follows:
SPCL FCTN .... SERVIC
TEST .... LOOP
ON OFF
.... TEST
SOURCE FR END
INTFCE

| Setup                  |                | Parameters           |              | Waveform                                            |        |     |          |          |       |          |        |
|------------------------|----------------|----------------------|--------------|-----------------------------------------------------|--------|-----|----------|----------|-------|----------|--------|
| CNTLD and CN           |                | Time<br>Relationship |              | CHI CPL                                             |        | :10 |          |          | .G=DC | /B1v     |        |
| Connect CH1 to A1 TP10 |                |                      |              |                                                     |        | T   |          |          |       |          |        |
| Connect CH2 to         | A1 TP11        |                      |              |                                                     |        |     |          |          |       | $\perp$  | $\Box$ |
| Oscilloscope:          |                |                      | ØVdc         |                                                     |        |     |          |          | 1     |          | Ц      |
| CH1 V/Div              | 200 mV/Div     |                      |              |                                                     |        |     |          |          |       | #        |        |
| CH2 V/Div              | 200 mV/Div     |                      | <del> </del> | +                                                   | -      | ┼╌  | -        | -        |       | -        | _      |
| CH1 Coupling           | dc             |                      | -            | <del>-  -  -  -  -  -  -  -  -  -  -  -  -  -</del> |        | H   | $\vdash$ | $\vdash$ | ╢     | $\dashv$ | Н      |
| CH2 Coupling           | dc             |                      | ØVdc         | ++                                                  |        | Н   |          | -        | -4    | -+       | 1_     |
| Time/Div               | 20 $\mu$ s/Div |                      |              | MT=CH1<br>MAIN= 2                                   | 0.0us/ | Div | ·        |          |       | <b>-</b> |        |
| Trigger                | CH1            |                      | #1           |                                                     |        |     |          |          |       |          |        |

### **Digital Source Waveforms continued**

All jumpers should be in normal position Connect ground to A1 TP1 or A1 TP15 Probe: 10:1

| _                                                                                                                                                       |                                     |                                    | Wand                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------|------------------------------------------------------------------------------|
|                                                                                                                                                         | tup                                 | Parameters                         | Waveform                                                                     |
| Connect CH1 to A Oscilloscope: CH1 V/Div CH1 Coupling Time/Div Trigger                                                                                  | 100 mV/Div<br>dc<br>1 μs/Div<br>CH1 | Time                               | Ovdc  HT=CH1  HAIN= 1.880S/Div  #2                                           |
| Connect CH1 to A Connect CH2 to A Connect CH2 to A Connect CH2 to A Connect CH2 V/Div CH1 V/Div CH1 Coupling CH2 Coupling CH2 Coupling Time/Div Trigger |                                     | Time<br>Relationship<br>Duty Cycle | CHI CPLG=DC CH2 CPLG=DC CH2 = 200.my/Div  OVdc  MT-CH1  MRIN- 200.mS/Div  #3 |
| NCLK and NSYN Connect CH1 to A Connect CH2 to A Oscilloscope: CH1 V/Div CH2 V/Div CH1 Coupling CH2 Coupling Time/Div Trigger                            | A1 J701-3                           | Time<br>Relationship               | #4                                                                           |

### **Digital Source Waveforms continued**

All jumpers should be in normal position Connect ground to A1 TP1 or A1 TP15 Probe: 10:1

| Se                  | Setup Parameters          |                      | Waveform                     |             |  |  |  |  |
|---------------------|---------------------------|----------------------|------------------------------|-------------|--|--|--|--|
| BSNC and SYNC OUT   |                           | Time<br>Relationship | CH) CPLG-DC<br>CH1= 200.my/I | CH2 CPLG=DC |  |  |  |  |
| Connect CH1 to A    | \1 U103-12                |                      |                              |             |  |  |  |  |
| Connect CH2 to A    | A1 U301-1                 |                      |                              |             |  |  |  |  |
| Oscilloscope:       |                           |                      | ØVdc                         |             |  |  |  |  |
| CH1 V/Div           | 200 mV/Div                |                      |                              |             |  |  |  |  |
| CH2 V/Div           | 200 mV/Div                | 1                    |                              |             |  |  |  |  |
| CH1 Coupling        | dc                        |                      | 8Vdc                         |             |  |  |  |  |
| CH2 Coupling        | dc                        |                      | MT-CH1                       |             |  |  |  |  |
|                     |                           |                      | MAIN- 500.45                 | /Div        |  |  |  |  |
| Time/Div<br>Trigger | 500 <i>μ</i> s/Div<br>CH1 |                      |                              | #5          |  |  |  |  |

Press the keys as follows:

**FREQ** 

..... FREQ SPAN

. . . . . 1 kHz

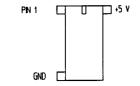
| 10× Effective Sa          | 0× Effective Sample Rate |            |                                |                   |        |     |  |  |  |  |
|---------------------------|--------------------------|------------|--------------------------------|-------------------|--------|-----|--|--|--|--|
| Connect CH1 to A          | A1 TP12                  | Duty Cycle | CH1 CPLG=DC<br>CH1= 100.mV/D:v |                   |        |     |  |  |  |  |
| Oscilloscope:             |                          |            |                                |                   |        |     |  |  |  |  |
| CH1 V/Div<br>CH1 Coupling | 100 mV/Div<br>dc         |            | 8vac                           |                   |        |     |  |  |  |  |
| Time/Div<br>Trigger       | 10 <i>μ</i> s/Div<br>CH1 |            |                                | MT=CH1<br>MAIN= 1 | 0.0u5/ | Div |  |  |  |  |
|                           |                          |            | -<br>-<br>-<br>-               |                   |        | #6  |  |  |  |  |

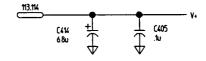
### **Digital Source Waveforms continued**

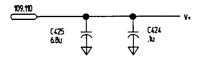
All jumpers should be in normal position Connect ground to A1 TP1 or A1 TP15

| Set                  | up                      | Parameters           |            |          | W            | avefo   | rm       |          |           |      |          |
|----------------------|-------------------------|----------------------|------------|----------|--------------|---------|----------|----------|-----------|------|----------|
| Connect the front pa | nel source output to ex | dernal trigger and ( | Channel 1. |          |              |         |          |          |           |      |          |
| Press the keys as fo | llows:                  |                      |            |          |              |         |          |          |           |      |          |
| SOURCE               | SOURCE                  | <b>:</b>             |            |          |              |         |          |          |           |      |          |
|                      | LEVEL                   |                      | <b>5</b> V |          |              |         |          |          |           |      |          |
|                      | SOURCE                  |                      | FIXED      |          |              |         |          |          |           |      |          |
|                      | TYPE                    |                      | SINE       |          | • • •        | • • • • | 125      | Hz       |           |      |          |
| SELECT T             | RIG MORE                |                      |            |          |              |         |          |          |           |      |          |
| SELECT II            | TYPES                   |                      | EXT        |          |              |         |          |          |           |      |          |
|                      | 20                      | ••••                 | TRIG       |          |              |         |          |          |           |      |          |
| TRIG                 |                         | Time                 |            |          | -            |         |          |          |           | -    |          |
|                      |                         |                      |            | CH1 CP   |              | _       |          |          |           |      |          |
| Connect CH1 to A     | 1 U5-7                  | Duty Cycle           |            | CH1- 1   | 00.mv/       | 1       | 1        | Γ        | П         |      |          |
|                      |                         |                      |            |          |              |         |          |          |           |      |          |
| Oscilloscope:        |                         |                      |            |          |              |         | <u> </u> |          |           |      |          |
| OUA MDE.             | 400 m///Dh              |                      |            |          | $\vdash$     | +       |          | -        | $\vdash$  |      | $\dashv$ |
| CH1 V/Div            | 100 mV/Div<br>dc        |                      |            | <b>}</b> | <b>  -</b> - |         |          | <b> </b> | <b>  </b> | •••• |          |
| CH1 Coupling         | ac                      |                      | ØVdc       |          |              |         |          |          |           |      |          |
| Time/Div             | 2 ms/Div                |                      |            |          |              | _       | ┞        |          |           |      | _        |
| Trigger              | CH1                     |                      | •          |          |              |         | $\vdash$ | _        | -         |      | $\dashv$ |
|                      |                         |                      |            | MT=CH1   |              |         | •        |          | ш         |      |          |

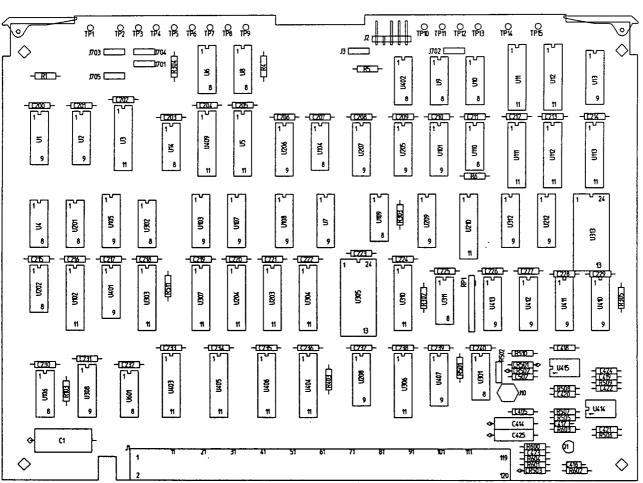
### **Digital Source After-Repair Adjustments and Tests**


Table 8-14. After-Repair Adjustments and Tests

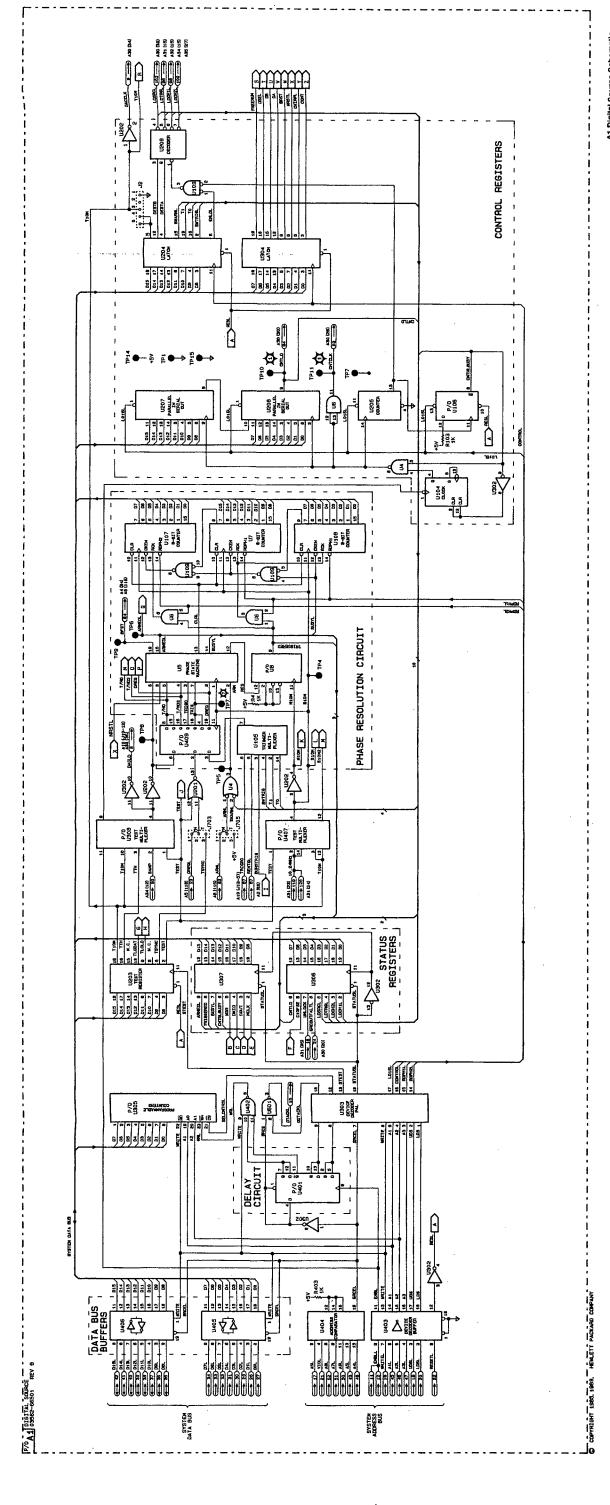

| Perform the following:*                                                                         | Section                                  |
|-------------------------------------------------------------------------------------------------|------------------------------------------|
| Diagnostic Tests:                                                                               | VII                                      |
| FR END INTFCE                                                                                   |                                          |
| SOURCE MAIN                                                                                     |                                          |
| TEST ALL                                                                                        |                                          |
| Adjustments:                                                                                    | <b>III</b>                               |
| None                                                                                            |                                          |
| Performance Tests:                                                                              | II                                       |
| If the noise generator subblock was repaired; perform the Source Energy Measurement test.       | (Chapter 4, HP 3563A Installation Guide) |
| Operational Verification:                                                                       | II                                       |
| If the phase resolution circuit was repaired; perform the Signal Channel Phase Accuracy test.   | (Chapter 3, HP 3563A Installation Guide) |
| If the LO Input Receiver was repaired; perform the Source Amplitude Accuracy and Flatness test. | ·                                        |


<sup>\*</sup>Return all jumpers to the normal (N) position.

| ···           |                           |                                         | - :: - |    |
|---------------|---------------------------|-----------------------------------------|--------|----|
| ĸ             | GND                       | +5¥                                     | ٧+     | ٧- |
| U1            | 8                         |                                         |        |    |
| U3            | 11                        |                                         |        |    |
| U5            | 11                        |                                         |        |    |
| U7            |                           |                                         |        |    |
| U8            | 7                         | • • • • • • • • • • • • • • • • • • • • |        |    |
| U9            | 7                         |                                         |        |    |
| U13           | 6.8                       |                                         |        |    |
| U14           |                           | 10,14                                   |        |    |
| U101          | 1                         |                                         |        |    |
| U102          | 11                        |                                         |        |    |
| U105          | 1,10,11                   |                                         |        |    |
|               | 12,13,15                  |                                         |        |    |
| U113          | 13,10                     |                                         |        |    |
|               | 17,18,19                  |                                         |        |    |
| U205          | 15,8                      |                                         |        |    |
|               | 9,10,15                   |                                         |        |    |
| U206          | 8,10,15                   |                                         |        |    |
| U207          | 8,10,15                   |                                         |        |    |
| U208          | 8,5                       |                                         |        |    |
| U209          | 8,9,10                    |                                         |        |    |
| U212          | 7,8                       |                                         |        |    |
| U <b>3</b> 01 | 2,11                      |                                         |        |    |
| U308          | 15                        |                                         |        |    |
| U313          | 12,18<br>19,20            | 21,24                                   |        |    |
| U404          | 13.5.7                    |                                         |        |    |
|               | 1.3.5.7<br>9.10.17.<br>18 |                                         |        |    |
| U407          | 15                        |                                         |        |    |
| U409          | 1                         |                                         |        |    |
| U414          |                           |                                         | 7      | 4  |
| U415          | 1                         |                                         | 8      | 4  |

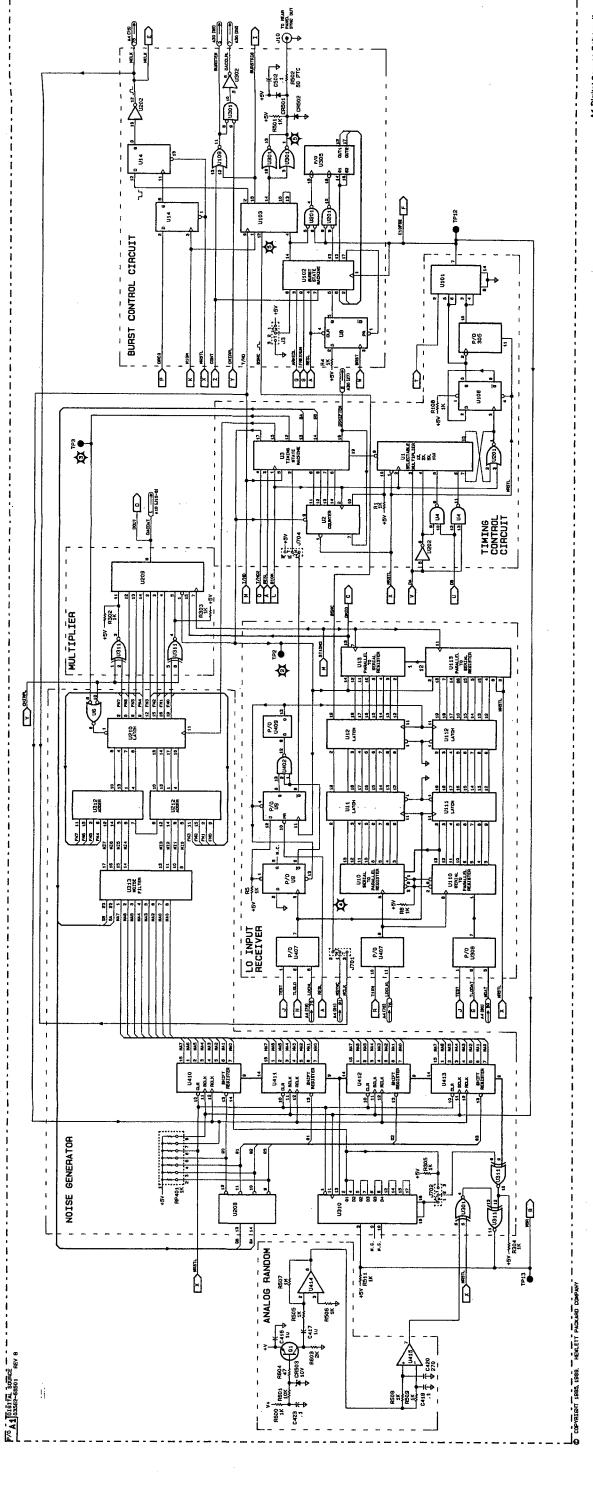

ALL INTEGRATED CIRCUITS ARE CORNER POWERED EXCEPT THOSE SHOWN IN THE REFERENCE TABLE.CORNER POWERED ICS HAVE GROUND CONNECTED TO THE LOWER LEFT PIN, AND +5 V CONNECTED TO THE UPPER RIGHT PIN.REGARDLESS OF THE TOTAL PIN COUNT (e.g. FOR A 16 PIN DIP, GROUND IS CONNECTED TO PIN 8 AND +5 V IS CONNECTED TO PIN 16).








COMPONENT LOCATOR REV B




A1 Digital Source Component Locator P/N 03562-66501 Rev B Page 2 of 4



Ć.

A1 Digital Source Schematic P/N 03562-66501 Page 3 of 4



ital Source Schematic P/N 03562-66501 Page 4 of 4

# A2, A22 System CPU/HP-IB

The information in this section should be used to isolate faulty subblocks in the A2 and A22 System CPU/HP-IB assemblies. All procedures assume the Fault Isolation procedures of Section VII have been used to determine which board has failed, and the Circuit Descriptions of Section VI are understood.

### Warning



Service procedures described in this section are performed with the protective covers removed and power applied. Hazardous voltage and energy available at many points can, if contacted, result in personal injury. Servicing must be performed only by trained service personnel who are aware of the hazards involved (such as fire and electrical shock).

#### Caution



Do not insert or remove any circuit board in the HP 3563A with the line power turned on. Power transients caused by insertion or removal may damage the circuit boards. Many of the parts are static sensitive. Use the appropriate precautions when removing, handling, and installing all parts to avoid unneccessary damage.

#### A2, A22 System CPU/HP-IB How to Use This Section

Start troubleshooting by using figure 8-8. This procedure diagram describes the best

order to perform the troubleshooting tests based on the symptoms observed.

Reference The component locator and schematic follow the "After-Repair Adjustments and Tests"

table. For the location of cables and boards refer to figure 4-1 in Section IV.

Verify Use the oscilloscope waveforms in table 8-19 to see correct operation at various test

points in the assembly.

After-Repair Use table 8-20 to determine which adjustments and tests need to be done to complete

instrument service.

#### **Troubleshooting Hints**

1. Only +5 Vdc and ground are required to troubleshoot the A2 CPU/HP-IB assembly. To run the A2 CPU/HP-IB assembly without the rest of the instrument, put jumpers A2 J15 and A2 J16 in test (T) position.

- 2. The A2 CPU/HP-IB can be run on an external clock by grounding A2 TP3 and connecting a TTL level, 8 MHz clock to A2 TP4.
- 3. Undefined failures are most likely caused by stuck bits. This is occurring if the status LEDs (A2 DS2) are a steady state value instead of changing rapidly. Go to the "CPU/HP-IB Initial Conditions Test."

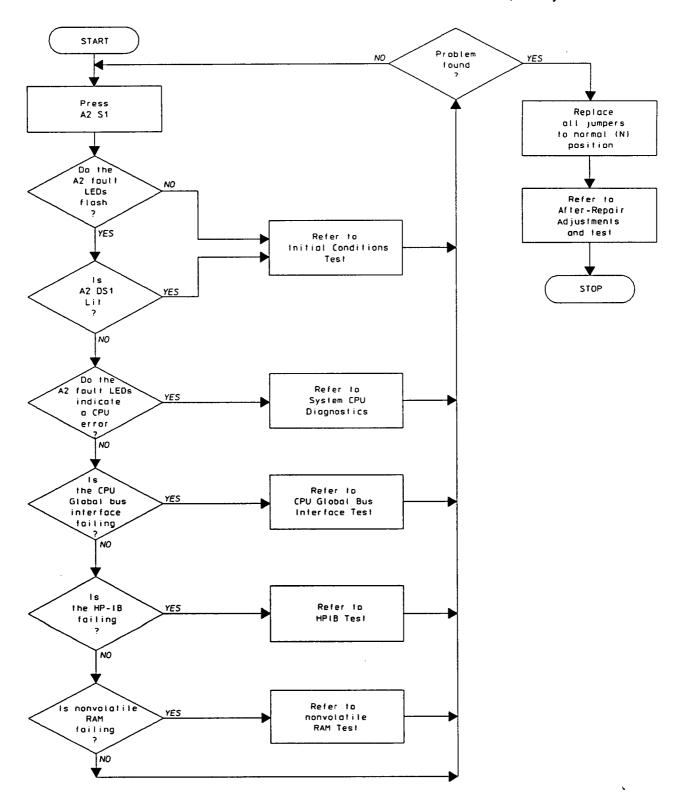



Figure 8-8. System CPU/HP-IB Troubleshooting Procedure Diagram

### **CPU/HP-IB Initial Conditions Test**

- 1. Disconnect the power cable from the rear panel and remove the top cover. Place the A2 CPU/HP-IB on the extender board.
- 2. Connect the power cable and press the HP 3563A line switch ON.
- 3. Check the following for correct value:

| Signal      | Location   | Value                                       |
|-------------|------------|---------------------------------------------|
| +5\$        | A2 TP2     | +5 +0.3V                                    |
| PWRUP       | A2 J15-2   | TTL logic 1                                 |
| PWRDNL      | A2 J16-2   | TTL logic 1                                 |
| HALTL       | A2 U100-17 | TTL logic 1                                 |
| RESETL      | A2 U100-18 | TTL logic 1                                 |
| 8 mHz Clock | A2 TP5     | Refer to Waveform #1 (CPU Signal Waveforms) |

- 4. If the +5S PWRUP, or PWRDNL are not the correct values, go to the "A18 Power Supply Assembly" troubleshooting procedures.
- 5. If the cause of the failure is still not found, go to the "CPU Signature Analysis Tests."

### **System CPU Diagnostics**

The CPU diagnostics do the following at turn on or when the CPU is reset by pressing A2 S1:

- 1. Flashes the LEDs and then turns each one on starting with DS3-1 (MSB).
- 2. Clears the test log.
- 3. Stores address and contents of NVRAM.
- 4. Check sums the monitor ROM.
- 5. Exercises several system processor (U100) instructions.
- 6. Tests the monitor RAM by writing and reading patterns to and from it.
- 7. If an error was found in the RAM test, the address decoder is exercised by writing addresses to several locations and reading the contents.
- 8. Tests the NVRAM using a write/read/restore sequence on each memory location.
- 9. Tests the timer and interrupt circuits.

The CPU diagnostics stop when a fault is found and display the error code on the test LEDs (A2 DS3, A2 DS4). If no error is found on the A2 CPU/HP-IB assembly, the power-up sequence continues. Use table 8-15 to determine the most likely failure causing an A2 CPU/HP-IB error code.

Table 8-15. System CPU/HP-IB Diagnostics

| Hex Error Code | Test Description         | Hex Code Explaination                | Most likely Failure                  |
|----------------|--------------------------|--------------------------------------|--------------------------------------|
| Undefined      | Initial Turn On          | Low level fault                      | CPU/HP-IB Initial<br>Conditions Test |
| 01             | Monitor Rom Check sum    | Upper byte failure Lower byte passes | A2 U105                              |
| 02             | Monitor Rom Check sum    | Lower byte failure Upper byte passes | A2 U205                              |
| 03             | Monitor Rom Check sum    | Both bytes fail                      | Go to SA (F)                         |
| 04             | Monitor Rom Check sum    | Both bytes pass                      | Go to SA (F)                         |
| 05             | Instruction Test         | U100 test passes                     | Go to SA (F)                         |
| 06             | Instruction Test         | U100 test fails                      | A2 U100                              |
| 10             | Monitor RAM Test         | High byte, MEMOL fails               | A2 U110                              |
| 11             | Monitor RAM Test         | Low byte, MEM0L fails                | A2 U210                              |
| 12             | Monitor RAM Test         | Both MEMOL bytes fail                | A2 U110, U210                        |
| 13             | Monitor RAM Test         | High byte MEM1L                      | A2 U109                              |
| 14             | Monitor RAM Test         | Low byte MEM1L                       | A2 U209                              |
| 15             | Monitor RAM Test         | Both MEM1L bytes fail                | A2 U109, U209                        |
| 16             | Monitor RAM Test         | High byte MEM2L fails                | A2 U107                              |
| 17             | Monitor RAM Test         | Low byte MEM2L fails                 | A2 U207                              |
| 18             | Monitor RAM Test         | Both MEM2L bytes fail                | A2 U107, U207                        |
| 19             | Monitor RAM Test         | Multiple Monitor RAM failures        | Go to SA (F)                         |
| 1A             | Monitor RAM Test         | NVRAM, bytes high fails              | A2 U212                              |
| 1B             | Monitor RAM Test         | NVRAM, bytes low fails               | A2 U211                              |
| 1C             | Monitor RAM Test         | Both NVRAM bytes fail                | A2 U212 U211                         |
| C"N"           | Monitor RAM Test         | RAM address test fails               | Line A"N"                            |
| OC             | Timer and Interrupt Test | Unexpected timer interrupt           | A2 U500, U413                        |
| OD             | Timer and Interrupt Test | Timer interrupt failure              | A2 U500, U413,<br>A2 U100            |
| OE             | Timer and Interrupt Test | Timer Failure                        | A2 U413                              |
| OF             | HP-IB Test               | HP-IB Failure                        | HP-IB subblock                       |

### **CPU Global Bus Interface Test**

- 1. Press the HP 3563A line switch OFF.
- 2. Remove the following assemblies:

A5 Digital Filter
A7 Floating Point Processor
A9 Fast Fourier Processor

- 3. Press the HP 3563A line switch ON.
- 4. Put A2J8, A2J12, A2J13, and A2J17 in test (T) position.
- 5. Repeatedly press the reset switch S1 while checking for TTL levels of the global bus drivers, latches, and control subblocks.

#### **HP-IB** Test

1. To test the HP-IB subblock press the HP 3563A keys as follows:

| Control SPCL |       | SERVIC |                  |                   |
|--------------|-------|--------|------------------|-------------------|
| FCTN         | ••••• | TEST   | <br>TEST<br>PROC |                   |
|              |       |        | <br>TEST<br>CPU  | <br>HP-IB<br>DIAG |

- 2. If this test passes, all signal paths and the pass through registers (A2 U112, A2 U113) are all right.
- 3. To check the HP-IB connector press the following keys:

| Control SPCL FCTN | <br>SERVIC<br>TEST | <br>LOOP        |           |        |
|-------------------|--------------------|-----------------|-----------|--------|
|                   |                    | <u>ON</u> OFF   |           |        |
|                   |                    | <br>TEST        |           |        |
|                   |                    | PROC            |           |        |
|                   |                    | <br>TEST<br>CPU |           | HP-IB  |
|                   |                    | Oi O            | • • • • • | CONNEC |

Service HP 3563A

### A2, A22 System CPU/HP-IB

4. Using a small jumper, short each of the control pins to the HP-IB connector ground. When a pin is grounded, the corresponding pin shown in the display should have a dot in it.

5. If this test passes, the HP-IB connector is functioning properly.

Note

Remove the fan (MP209) before attempting to remove the A22 HP-IB board.

#### **Nonvolatile RAM Test**

1. Check the following for correct value:

| Location | Value              |
|----------|--------------------|
| U211-28  | ≥ 4.5V             |
| U212-28  | ≥ 4.5V             |
| U211-26  | Clocking<br>Signal |
| U212-26  | Clocking<br>Signal |

- 2. Press the HP 3563A line switch off. With the power off, U211-28 should be greater than 3V.
- 3. Connect the signature analyzer according to table 8-16.
- 4. Check the signatures of A2 U408-6 and A2 U305-15, they should be the same.

### **CPU Signature Analysis Tests**

These tests are used when the previous tests fail to find the problem.

- 1. Disconnect the HP 3563A power cable.
- 2. Put the following jumpers in test (T) position:

A2J4, A2J5, A2J6, A2J7, A2J9, A2J10, A2J18

- 3. Put A2 J11 and A2 J14 in position "2".
- 4. Connect the signature analyzer according to table 8-16.

Table 8-16. CPU Signature Analyzer Setup

| Signal | Polarity      | Connection |
|--------|---------------|------------|
| Ground | -             | A2 J2-1    |
| Clock  | Positive edge | A2 J2-3    |
| Stop   | Negative edge | A2 J2-4    |
| Start  | Negative edge | A2 J2-5    |

5. Connect the power cable and press the HP 3563A line switch ON.

Table 8-17. CPU Signature Analysis Test ONE

### **Address Test**

Jumpers in test (T) position: A2J4,A2J5,A2J6,A217,A2J9,A2J10

Jumpers in position "2": A2J11,A2J14,

Jumpers in normal (N) position: A2J1,A2J8,A2J17,A2J12,A2J13,

Jumpers in either normal or test position: A2J15 A2J16,

Signature Analyzer Setup: Refer to table 8-16,

+5 V Signature = 0001

| Component | Pin | Signature | Component | Pin | Signature |
|-----------|-----|-----------|-----------|-----|-----------|
| U100      | 29  | UUUU      | U100      | 37  | HC89      |
|           | 30  | 5555      |           | 38  | 2H70      |
|           | 31  | CCCC      |           | 39  | HPPO      |
|           | 32  | 7F7F      |           | 40  | 1293      |
|           | 33  | 5H21      |           | 41  | HAP7      |
|           | 34  | OAFA      |           | 42  | 3C96      |
| ı         | 35  | UPFH      |           | 43  | 3827      |
|           | 36  | 52F8      |           | 44  | 755U      |

Put jumper J1 in position "1". Press A2 S1 (reset switch). It takes about 20s for each of the following signatures to stabilize.

+5 V Signature = 6PCP (TP2)

| Component | Pin | Signature | Component | Pin | Signature |
|-----------|-----|-----------|-----------|-----|-----------|
| U100      | 45  | 2595      | U305      | 14  | 0000      |
|           | 46  | 1F8F      |           | 15  | 21P1      |
|           | 47  | U97F      |           | 16  | 1582      |
|           | 48  | 5A34      |           | 17  | AC4F      |
|           | 49  | 6PCP      |           | 18  | 012U      |
|           | 50  | 91FC      | U606      | 13  | 443U      |
|           | 51  | 3CPF      |           | 15  | 6PCP      |
|           | 52  | A70F      | <u> </u>  | 16  | AP18      |
| U305      | 10  | 4CAH      | ]         | 17  | A52A      |
|           | 11  | U001      |           | 18  | UA2U      |
|           | 12  | 122P      |           | -   |           |
|           | 13  | 6PCP      |           |     |           |

6. If the signatures in table 8-17 are incorrect, check that A2 U100 pins 12, 13, 21, 22, 23, 24, and 25 are a TTL logic high.

7. Put A2 J1 in position "2". It takes about 10s for each of the signatures in table 8-18 to stabilize.

### Table 8-18. CPU Signature Analysis Test TWO

### **Monitor ROM Test**

Jumpers in test (T) position: A2J4,A2J5,A2J6,A2J7,A2J9,A2J10

Jumpers in position "2": A2J1,A2J11,A2J14
Jumpers in normal (N) position: A2J8,A2J17,A2J12,A2J13 Jumpers in either normal or test position: A2J15,A2J16

Signature Analyzer Setup: Refer to table 8-16

+5 V Signature = 6PCP

| Component | Pin | Signature | Component | Pin | Signature |
|-----------|-----|-----------|-----------|-----|-----------|
| U105      | 11  | 57U1      | U205      | 11  | OHA4      |
|           | 12  | 1C5F      |           | 12  | 5598      |
|           | 13  | UPCA      |           | 13  | 764P      |
|           | 15  | U818      |           | 15  | HPC9      |
|           | 16  | 5P50      |           | 16  | 1768      |
|           | 17  | 2478      |           | 17  | 80A0      |
|           | 18  | 6575      |           | 18  | 1H26      |
|           | 19  | AH97      |           | 19  | P4FF      |

Service A2, A22 System CPU/HP-IB

### **CPU Signal Waveforms**

The oscilloscope plots are used for troubleshooting the A2 CPU/HP-IB. Note that all the measurements are taken with a 10:1 probe. Other notes unique to a measurement are written next to the waveform.

Table 8-19. CPU Signal Waveforms

Remove Power
Jumpers in normal (N) position: All jumpers
Connect ground to A2 TP1

Probe: 10:1 Power On

| Setup                                                                                                        |                     | Parameters           | Waveform                                 |  |  |
|--------------------------------------------------------------------------------------------------------------|---------------------|----------------------|------------------------------------------|--|--|
| 8 MHz Clock  Connect CH1 to A  Oscilloscope: Bandwidth Limit: Mode  CH1 V/Div CH1 Coupling  Time/Div Trigger |                     | Time<br>Pulse shape  | 0Vdc HT-CH1 HRIN= 50.0n5/D1v #1          |  |  |
| Press A2 S1 switch                                                                                           | to see the waveform | #2. DTACKL and ASL   | will stop changing for a short time (2s) |  |  |
| Connect CH1 to A<br>Connect CH2 to A                                                                         |                     | Time<br>relationship | CH1 CPLG=DC                              |  |  |
| Oscilloscope:                                                                                                |                     |                      |                                          |  |  |
| Donate all and all his 1 decisions                                                                           |                     | i e                  | 1                                        |  |  |

Oscilloscope:
Bandwidth Limit: ON
Mode A&B

CH1 V/Div 100 mV/Div
CH2 V/Div 100 mV/Div
CH1 Coupling dc
CH2 Coupling dc
Time/Div 200 ns/Div

CH1

Trigger

### **CPU Signal Waveforms continued**

Remove Power

Jumpers in normal (N) position: All jumpers Connect ground to A2 TP1 Probe: 10:1

Power On

To display waveform #3, press the HP 3563A keys as follows:

**SPCL** 

**FCTN** 

..... SERVIC

TEST

..... LOOP

ON OFF

**TEST** 

SOURCE

.... LO DSA

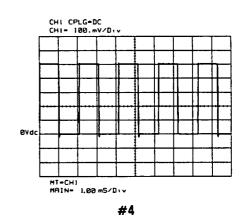
PATT1

| Setup            |                 | Parameters          | Waveform         |
|------------------|-----------------|---------------------|------------------|
| VMAL, ENBL       |                 | Time<br>Pulse shape |                  |
| Connect CH1 to   | A2 U100-19      | 1 3.03 3.13 4       |                  |
| Connect CH2 to   | A2 U100-20      |                     | CH1 CPLG=DC      |
|                  |                 |                     |                  |
| Oscilloscope:    |                 |                     |                  |
| Bandwidth Limit: | ON              |                     |                  |
| Mode             | A&B             |                     | BVdc Land        |
|                  |                 |                     |                  |
| CH1 V/Div        | 200 mV/Div      |                     |                  |
| CH2 V/Div        | 200 mV/Div      |                     |                  |
| CH1 Coupling     | dc              |                     | evac             |
| CH2 Coupling     | dc              |                     | MT-CHL           |
|                  |                 |                     | MAIN- 1.00u5/Div |
| Time/Div         | $1.0 \mu$ s/Div |                     | #3               |
| Trigger          | CH1             |                     | •                |

Press RETURN .... LOOP ON OFF

**ERROUT** Connect A2 TP6 to A2 TP1 Connect CH1 to A2 U404-7 Oscilloscope: Α

Mode


CH1 V/Div 100 mV/Div **CH1 Coupling** dc

Time/Div Trigger

1 ms/Div

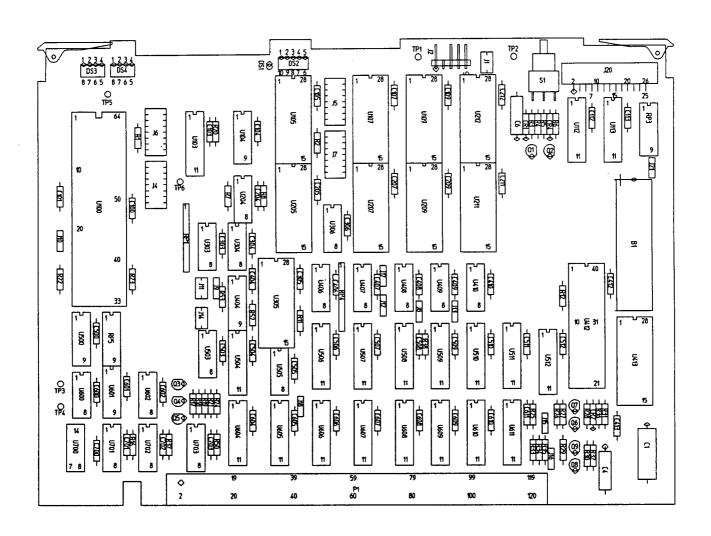
CH1

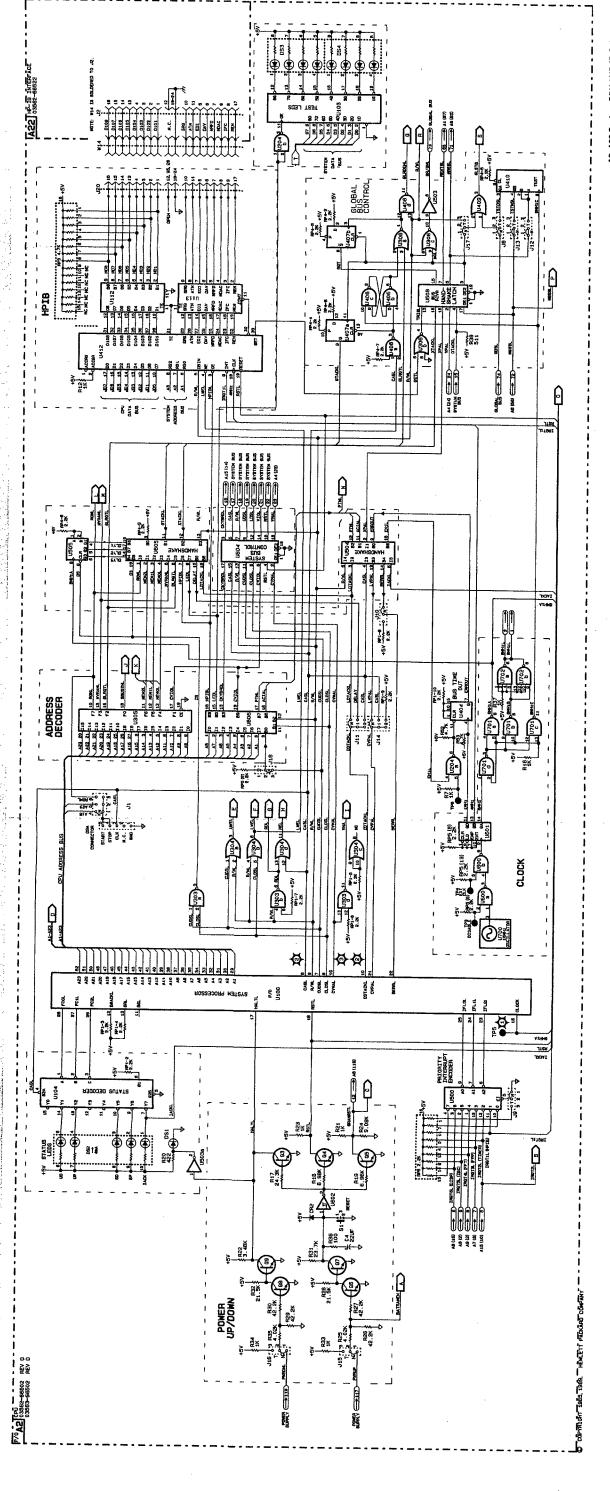
Time



# A2, A22 System CPU/HP-IB

## CPU/HP-IB After-Repair Adjustments and Tests


Table 8-20. After-Repair Adjustments and Tests


| Perform the following:*       | Section      |
|-------------------------------|--------------|
| Diagnostic Tests:<br>TEST ALL | VII          |
| Adjustments:<br>None          | <del>-</del> |
| Performance Tests: None       | _            |

<sup>\*</sup>Return all jumpers to the normal (N) position

|               |              |            |                    | BAT-      |                                         |
|---------------|--------------|------------|--------------------|-----------|-----------------------------------------|
| ĸ             | GND          | •5٧        | (APS<br>(1000      | TERY      | NO CONNECTION                           |
| U100          | 16,53        | 14,49      | (1000<br>(100)     |           |                                         |
| Û103          | . <b>i</b> o | . 20       | (104               |           |                                         |
| ñ <b>1</b> 04 | . B          | . 16       | Č103               |           | 11,12,15                                |
| U105          | .14 . : .    | 1,26       | (105               |           |                                         |
| U107          | ٠.٠          | . 28       | C107               |           | 1                                       |
| U109          | . 14         | . 28       | C109               |           | 1                                       |
| UHO.          |              | . 28       | C#10               |           | [!                                      |
| ńμΣ           | . 10         | 20         | C112               |           |                                         |
| ΨB            | . 10         | 20         | C113               |           |                                         |
| U204          | . ?          | 14         | C204               |           |                                         |
| U205          |              | 1,28       | C205               |           |                                         |
| U207          | .¥           | 28         | C207               |           | :1                                      |
| U209          |              | 28         | C209               |           |                                         |
| Ų2 <b>10</b>  | . ¥          |            | [210               |           | .!                                      |
| U2ff          | . *          |            | C211               | . 28      | . 1                                     |
| U212          |              |            | [212               | 28        |                                         |
| V303          |              | .¥         | C203               |           |                                         |
| V304          |              | . 14       | C304               |           |                                         |
| ń302          |              | . 28       | C305               |           |                                         |
| U306          |              | . 14       | C307               |           |                                         |
| U404          | 8            | . 16       | C404               |           | 369.12.13                               |
| U406          | . <u>.</u> ; | 14         | C406               |           |                                         |
| U407          |              | . K        | C309               |           | . 5.8                                   |
| U408          |              | 4,10       | (406               |           |                                         |
| U409          | ,            | 8,4        | C408               |           | 568,9.11.12<br>56,10,11.12.13           |
| U410          | 20           | . ¥        | C409               | · · · · · | 1                                       |
| U412          | 1.7.         | .40        | C412               |           |                                         |
| WB.           |              | . <b>K</b> | [4B                |           | 3.6.27<br>14,15                         |
| U500          | 34,7         | . 16       | C500<br>C503       |           | 34,5410,11,12,13                        |
| U503<br>U504  | 11,13        | 20         | (504               |           |                                         |
| 1             | 10           |            | C505               |           | 17.8.15.17.18.19                        |
| U505<br>U506  | 10           | . K        | C606               |           | 3.10,11,12,13                           |
| 1             |              | 20         | (605               |           |                                         |
| U507<br>U508  | - 10         | . 20       | C508               | 1         | 449947749                               |
| U509          | 10           | . 20       | (509               |           | 1,68,9,11,12,14,19                      |
|               | 10.          | . 20       | 1                  | · · · · · |                                         |
| U510<br>U511  | 1            | 20         | (510               | · · · · · |                                         |
| U512          |              |            | C5M                | · ····    | -                                       |
| NWW.          | 10           | . 20       | (512               | +         |                                         |
| U601          | 8            | 16         |                    | · · · · · |                                         |
|               | 357          | .          | C601               |           | 8,10,112                                |
| U602          | , p. n. o    |            | C502<br>C604       |           | 34.5.6                                  |
| U604          |              |            |                    | · · · · · | 4,68,10,12                              |
| U605          | . 10         |            |                    |           |                                         |
| Ú606          | .   . 10     | . 20       | C507               | 1         | <mark>K</mark>                          |
| Ų6 <u>0</u> 7 |              |            | (607<br>(ANR       | 1         |                                         |
| ñęòs          |              | 1          | (608               | · · · ·   |                                         |
| U609          |              | .   .20    | (609               | + · · ·   | 3.11                                    |
| U610          |              |            | . (610             | + · · ·   | · • · · · · · · · · · · · · · · · · · · |
| U6f1          |              | . 20       |                    | +         | 1234549<br>10 HZ 0                      |
| Ų700          | Ι.           | u          | . [700<br>  C701   | +         |                                         |
| U701.         |              |            | .   1701<br>  1702 | +         | 3.11                                    |
| Ų702<br>U703  |              |            | . 1702<br>1703     |           | 3,11                                    |
| U703          |              |            | 1,                 | ——        | 12.0                                    |

A2 Ground & Power Chart P/N 03563-66502 Rev C Page 1 of 4





A2, A22 System CPU / HP-IB Schemat P/N 03563-6650 P269 3 24

A2, A22 System CPU / HP-IB Schematic P/N 03563-66502 Page 4 of 4

## A9 Fast Fourier Transform (FFT) Processor

The information in this section should be used to isolate faulty subblocks on the FFT board. All procedures assume that you have used the fault isolation procedures in Section VII to determine that this board has failed and that you have read and understand the circuit descriptions in Section VI.

#### Warning



Service procedures described in this section are performed with protective covers removed and power applied. Hazardous voltages in these circuits can cause personal injury if contacted. Servicing must be preformed only by trained service personnel who are aware of the hazards involved (such as fire and electrical shock).

#### Caution



Do not insert or remove any circuit board in the HP 3563A while power is on. Power transients caused by insertion or removal may cause damage to circuits on the board being changed or on other boards. Many of the parts are static sensitive. Use the appropriate precautions when removing, handling, and installing all parts to avoid unneccessary damage.

Service HP 3563A

A9 Fast Fourier Transform (FFT) Processor

#### **How to Use This Section**

Start To troubleshoot the FFT board, use the FFT diagnostic tests to further isolate the

problem. Circuit descriptions in Section VI provide the background for understanding

how the FFT board circuits work.

Procedure Once the problem has been localized to a block of circuits, one of the three digital

signature analysis (SA) tests should be used to troubleshoot individual circuits.

Waveforms are provided in table 8-27 to demonstrate the correct appearance of the SA

clock and start/stop signals.

Reference The component locator and schematic follow the "After-Repair Adjustments and Tests"

table. Refer to figure 4-1 in Section IV for the location of cables and boards.

After-Repair Use table 8-28 to determine which adjustments and tests need to be done to complete

instrument service.

### **Troubleshooting Hints**

1. The FFT status LEDs should be OFF during normal operation. They are not used to service the board.

2. A major portion of the FFT process is addressing. Be sure you understand which parts of the circuit are part of the addressing block. Refer to the block diagrams in the circuit descriptions in Section VI.

### **FFT Diagnostics**

The diagnostic tests for the FFT board allow you to test groups of circuits to further isolate a problem. A subset of the FFT diagnostic tests run when the instrument power is turned ON, during SELF TEST, or during TEST ALL. Display the FFT-diagnostic test menu using the following sequence of keystrokes:

| Control PRESET    | <br>RESET          |                  |
|-------------------|--------------------|------------------|
| Control SPCL FCTN | <br>SERVIC<br>TEST | <br>TEST<br>PROC |
|                   |                    | <br>TEST<br>FFT  |

The menu now contains the following entries of FFT diagnostics tests:

FFT FUNCTN
FFT STATUS
FFT INTRPT
FFT RAM
FFT ROM
FFT GL INTFC

Details of each test follows.

FFT Function Test This test performs all the tests found in the rest of the menu (status, interrupt, RAM, ROM, and global interface tests). It also exercises the FFT functions by performing a forward and a reverse FFT, and Hanning, uniform, flattop, and user-defined windows on a known block of data. The resulting checksum is compared to a known value by the CPU.

If the FFT function test fails but the analyzer appears to work correctly when analyzing a fixed sine signal and all the rest of the diagnostic tests for this board pass, investigate the pseudorandom number generation block. It is reset prior to doing the math for the special functions of this test so that the resultant checksum is repeatable. If the PRN generator is not reset or does not operate correctly, the checksum generated won't always agree with the stored checksum.

The FFT function test is the most extensive diagnostic test available to test the FFT board. It is executed as a subset of the tests performed whenever the SELF TEST and TEST ALL tests are run.

FFT Status Test This test quickly checks the operation of the system bus operation between the CPU and the FFT boards. The CPU addresses the FFT board and loads a command to it which causes the FFT microprocessor to return the CPU command data. This tests the system interface circuits (in both directions), the internal data bus, the FFT microprocessor system, the transceiver between the TMS320 microprocessor and the internal data bus, and both interrupt circuits. If this test passes you know that the CPU can talk to the FFT microprocessor and the FFT microprocessor can interpret commands and respond (talk) to the system CPU.

FFT Interrupt Test This test checks the ability of the FFT board to interrupt the main system CPU and exercises the addressing and global bus circuits. The CPU interrupt must occur within a limited time. Two results are listed if this test is successful: the timeout test(called the "interrupt Registered" results) and the exercise routine results (called the "FFT Interrupt" results). The test runs as follows:

- 1. The system CPU (A2) loads a command into a register on the FFT board and starts a timer.
  - This action utilizes the system bus interface circuits and the FFT interrupt circuit on the FFT board.
- 2. The FFT microprocessor system interprets the command, stores two numbers (5555H and AAAAH) in the scale factor registers in global RAM and activates the CPU interrupt.
  - This action utilizes the FFT addressing circuitry, the global bus address and data interface circuits, and the CPU interrupt circuit on the FFT board.
- 3. If the system CPU receives the interrupt from the FFT board before the end of the timer cycle, the "FFT Interrupt Registered" test passes.
- 4. The CPU checks the numbers stored in RAM against a known number. If the numbers are identical, the "FFT Interrupt" test passes.

FFT RAM Test This test is a self-test run by the TMS320 FFT microprocessor on its own internal RAM. The test program resides in ROM in the FFT microprocessor system. The system CPU addresses the FFT board and loads a command to run the RAM test. After the test is complete the FFT board interrupts the system CPU and passes the test results (pass or fail) back to the CPU.

The system interface and both the FFT and CPU interrupt circuits are exercised as a byproduct of this test.

FFT ROM Test Each of the program and coefficient ROMs have a checksum number in the last byte. When the ROM test is run the system CPU reads the ROMs, generates its own checksum and compares it with the checksum stored in the program and coefficient ROMs.

To read the contents of the FFT ROMs, the CPU sends instructions to the FFT board causing it to place the ROM contents, one word at a time, into a specific location in global RAM where the CPU can access the data. The FFT board changes contents of another location of global RAM to zero each time it completes the transfer of a word. The CPU monitors this second location for an indication of valid data in the first location.

The system and global interface blocks are exercised as a by-product of this test.

Global Interface Test This tests moves (copies) a block of data from one area of global RAM to another area. It exercises both interrupt circuits and the address circuitry besides testing the global interface circuits.

The CPU instructs the FFT to do a block move, waits for the FFT to signal that it has finished the process, and then compares values of the two areas of RAM to determine whether the data copied is identical to the original data.

### **FFT Signature Analysis Tests**

There are three digital signature tests designed to test the digital circuits on the FFT board. These tests are referred to by number as FFT Signature Analysis Test ONE, Test TWO, and Test THREE.

Test ONE tests the program ROMs (U301 and U303) and, to a limited extent, the TMS320 microprocessor. See table 8-22 for the signatures of Test ONE. With J3 and J4 in the test position (marked with a"T") the ROM output lines are disconnected and the TMS320 data lines are grounded. This test may be used to test the input and output signals of the ROM integrated circuits. The operation of the microprocessor is partially verified by this test because the address line outputs of the TMS320 are identical to the ROM input lines.

Test TWO may be used to test most of the circuits on the FFT board. The only exceptions are the global bus interface circuits. These require a special clock and are covered in Test THREE.

Test THREE may be used to test the global bus interface circuits (U511 through U516) and the coefficient ROM outputs (U315 and U317). This test uses the memory grant signal on test point 3 as a clock. See the table 8-26 for the signatures of Test THREE.

### **FFT Signature Analyzer Test ONE**

- 1. Disconnect the power cable.
- 2. Put the FFT board on an extender card. All jumpers should be in the normal (N) position.
- 3. Connect and configure the signature analyzer as described in table 8-21.
- 4. Connect the power cable and turn ON power.

Table 8-21. FFT Signature Analyzer Setup ONE

| Signal | Polarity | Connection |
|--------|----------|------------|
| Ground | _        | A9 J5-1    |
| Clock  | Neg edge | A9 J5-3    |
| Stop   | Neg edge | A9 J5-4    |
| Start  | Pos edge | A9 J5-5    |

- 5. Move Jumpers J3 and J4 to the test (T) position.
- 6. Move jumper J1 to the TST2 position.
- 7. Press the reset switch on the CPU board (A2 S1).
- 8. When completed, return all jumpers to the normal (N) position (either position OK for J1).

Note

Steps 5, 6, and 7 activate the test.



| Component        | Pin | Signature | Component     | Pin | Signature |
|------------------|-----|-----------|---------------|-----|-----------|
| U301             | 8   | H62U      | U303          | 9   | 366P      |
| and<br>U303      | 7   | C21A      | only;<br>data | 10  | 2UFH      |
| address          | 6   | HA07      | (output)      | 11  | F7A2      |
| (input)<br>lines | 5   | НОАА      | lines         | 13  | 0510      |
| 111162           | 4   | P030      | ]             | 14  | 0637      |
|                  | 3   | 4442      |               | 15  | 2AA9      |
|                  | 2   | 4U2A      | 1             | 16  | CAPA      |
| 1                | 1   | 0772      | 1             | 17  | 0442      |
|                  | 23  | 9635      |               |     |           |
|                  | 22  | 1734      | ]             |     |           |
|                  | 21  | 8P54      | ]             |     |           |
| U301             | 9   | 8551      | ]             |     |           |
| only;<br>data    | 10  | 9100      | 1             |     |           |
| (output)         | 11  | . 3000    |               |     |           |
| lines            | 13  | U6H7      | 1             |     |           |
|                  | 14  | 6P56      |               |     |           |
|                  | 15  | 2905      |               |     |           |
|                  | 16  | CFPC      |               |     |           |
|                  | 17  | A484      | 7             |     |           |

Table 8-22. FFT Signature Analysis Test ONE

Return all jumpers to the normal (N) position (either position OK for J1).

### FFT Signature Analysis Test TWO

- 1. Disconnect the power cable.
- 2. Put the FFT board on an extender card. All jumpers should be in the normal (N) position.
- 3. Connect and configure the signature analyzer as described in table 8-23.
- 4. Connect the power cable and turn ON power.

Table 8-23. FFT Signature Analyzer Setup TWO

| Signal | Polarity | Connection |
|--------|----------|------------|
| Ground | _        | A9 J5-1    |
| Clock  | Neg edge | A9 J5-3    |
| Stop   | Neg edge | A9 J5-4    |
| Start  | Pos edge | A9 J5-5    |

- 5. Move jumper J2 to the test (T) position.
- 6. Move jumper J1 to the TST1 position.
- 7. Press the reset switch on the CPU board (A2 SI). Allow  $\approx 2$  minutes for signatures to stabilize before checking.
- 8. When completed, return all jumpers to the normal (N) position (either position OK for J1).

Note

Steps 5, 6, and 7 activate the test.



Table 8-24. FFT Signature Analysis Test TWO

| Signal name        | IC (pin) | Signature | Signal name     | IC (pin) | Signature |
|--------------------|----------|-----------|-----------------|----------|-----------|
| TMS320 data lines  | 3        |           | Port decoder in | puts.    |           |
| D0                 | U103(26) | 31HP      |                 | U216(1)  | 1894      |
| D1                 | (25)     | F8F2      |                 | (2)      | 0806      |
| D2                 | (24)     | 06F0      |                 | (3)      | 9721      |
| D3                 | (23)     | 001P      |                 | (6)      | P23A      |
| D4                 | (22)     | U7P8      |                 | (4)      | A712      |
| D5                 | (21)     | 5204      |                 | (5)      | 3P7P      |
| D6                 | (20)     | 0746      |                 | U217(1)  | 1894      |
| D7                 | (19)     | 1180      |                 | (2)      | 0806      |
| D8                 | (11)     | 9376      |                 | _ (3)    | 9271      |
| D9                 | (12)     | P682      |                 | (6)      | P23A      |
| D10                | (13)     | 349C      |                 | (4)      | 0865      |
| D11                | (14)     | 053U      | Port decoder o  | utputs:  |           |
| D12                | (15)     | UA51      | SIRQSYSL        | U216(15) | P23A      |
| D13                | (16)     | НРН7      | GDBOUTL         | (14)     | OHPC      |
| D14                | (17)     | F091      | 1               | (13)     | 29FF      |
| D15                | (18)     | 77HP      | SDBUSOUTL       | (12)     | P23A      |
| Internal data bus: |          |           | LDHWCRL         | (11)     | 0807      |
| IDB0               | U503(18) | 31HP      | LDCTR2L         | (10)     | 5P63      |
| IDB1               | (14)     | F8F2      | LDPGSL          | (9)      | PC2U      |
| IDB2               | (16)     | 06F0      | 1               | (7)      | P23A      |
| IDB3               | (17)     | 001P      | RIRQSYSL        | U217(15) | P23A      |
| IDB4               | (15)     | U7P8      | GDBINL          | (14)     | 2465      |
| IDB5               | (11)     | 5204      | PROMINL         | (13)     | 9CAU      |
| IDB6               | (13)     | 0746      | SDBUSINL        | (12)     | P23A      |
| IDB7               | (12)     | 1180      | SABUSINL        |          | (11)      |
| IDB8               | U403(18) | 9376      |                 |          | (10)      |
| IDB9               | (17)     | P682      | CLRSCALEL       |          | (9)       |
| IDB10              | (16)     | 349C      | BFSUBADL        |          | (7)       |
| IDB11              | (15)     | 053U      |                 |          |           |
| IDB12              | (14)     | UA51      |                 |          |           |
| IDB13              | (13)     | НРН7      |                 |          |           |
| IDB14              | (12)     | F091      |                 |          |           |
| IDB15              | (11)     | 77HP      | 7 -             |          |           |

| Signal name      | IC (pin) | Signature | Signal name      | IC (pin)   | Signature |
|------------------|----------|-----------|------------------|------------|-----------|
| I/O Sequencer:   |          |           | Hardware Control | Registers: |           |
| SEQSEL0          | U117(9)  | OCA9      | IDB15            | U406(2)    | 77HP      |
| SEQSEL10         | (8)      | A107      | IDB14            | (3)        | F091      |
| REALDATA         | (7)      | 0003      | IDB13            | (4)        | HPH7      |
| TWOCH            | (6)      | 171A      | IDB12            | (5)        | UA51      |
| GDINEMPTY        | (5)      | 6476      | IDB11            | (6)        | 053U      |
| GDOUTRDY         | (5)      | PUH1      | IDB10            | (7)        | 349C      |
| PASSDONE         | (3)      | 6052      | IDB9             | (8)        | P682      |
| DIDONE           | (2)      | A7C1      | IDB8             | (9)        | 9376      |
| FFTMR            | (27)     | *         | LDHWCRL          | (11)       | 0807      |
| FFTMG            | (26)     | *         | WINLOC           | (19)       | 703P      |
| WINLOC           | (25)     | 703P      | BNKSEL           | (18)       | AAF4      |
| PASSBITO         | (22,10)  | 14AA      | SWAP             | (17)       | P41A      |
| CTRIENL          | (21,13)  | 4POA      | CTR2DNL          | (16)       | 8C22      |
|                  | (20)     | P23A      | TWOCH            | (15)       | 171A      |
| Γ                | (1)      | 0000      | REALDATA         | (14)       | 0009      |
| Ţ.               | (19)     | PA3H      | SEQSEL1          | (13)       | A107      |
| WINDPGL          | (17)     | FU43      | SEQSEL0          | (12)       | OAC9      |
| FFTWR            | (16)     | 9758      | IDB7             | U405(2)    | 1180      |
| POSTINCL         | (15)     | 15FU      | IDB6             | (3)        | 0746      |
| REQGBL           | (12)     | 3176      | IDB5             | (4)        | 5204      |
| LDCAL            | (11)     | 3H4O      | IDB4             | (5)        | U7P8      |
| Sequence decoder |          |           | IDB2             | (7)        | 06F0      |
| SEQSEL1          | U115(1)  | A107      | IDB3             | (6)        | 001P      |
| SEQSEL0          | (2)      | OAC9      | IDB1             | (8)        | F8F2      |
| CTR2DNL          | (3)      | 8C22      | IDBO             | (9)        | 31HP      |
| CTRIENL          | (4)      | 4POA      | LDHWCRL          | (11)       | 0807      |
| POSTINCL         | (5)      | 15FU      | LEV2             | (19)       | PACU      |
| CLKOUTL          | (6)      | 0000      | LEV1             | (18)       | F167      |
| REQGBL           | (7)      | 3176      | LEV0             | (17)       | H441      |
| FFTWR            | (8)      | 9758      | TBSEL2           | (16)       | F789      |
| CTRB11           | (9)      | 80UA      | TBSEL1           | (15)       | 815H      |
| W11              | (11)     | 2U78      | TBSEL0           | (14)       | 3A50      |
| CLRRDYL          | (19)     | P8P0      | SCALE1           | (13)       | C1CP      |
| CLREMPTYL        | (18)     | 7228      | SCAL'E0          | (12)       | 8Н36      |
| FA11             | (17)     | H351      |                  |            |           |
| INC1L            | (15)     | 4348      |                  |            |           |
| DEC2L            | (14)     | U42A      | ·                |            |           |
| INC2L            | (13)·    | A2AH      |                  |            |           |

<sup>\*</sup> use Test Three for signatures of these signals

| Signal name     | IC (pin)         | Signature | Signal name      | IC (pin)          | Signature |
|-----------------|------------------|-----------|------------------|-------------------|-----------|
| Pseudo Scale:   |                  |           | Global Address I | Bus Interface:    |           |
| IDB8            | U305(5)          | 9376      | FA15             | U512(2)           | 9993      |
| IDB9            | (6)              | P682      | FA14             | (3)               | 2088      |
| IDB10           | (7)              | 349C      | FA13             | (4)               | 3FU7      |
| IDB11           | (4)              | 053U      | FA12             | (5)               | 08P8      |
| IDB12           | (3)              | UA51      | FA11             | (6)               | H351      |
| 1DB13           | (2)              | НРН7      | FA10             | (7)               | 6739      |
| IDB14           | (1)              | F091      | FA9              | (8)               | 1P6P      |
| IDB15           | (15)             | 77HP      | FA8              | (9)               | C904      |
|                 | (12)             | 8090      | REQGBL           | (11)              | 3176      |
| ·               | (11)             | 54H8      | FA7              | U511(2)           | 5091      |
| CLRSCALEL       | U208(5,11)       | AH5F      | FA6              | (3)               | H289      |
| GDBOUTL         | (4,12)           | OHPC      | FA5              | (4)               | F6C8      |
| DIVBY4          | (7)              | 1384      | FA4              | (5)               | 444H      |
| DIVBY2          | (9)              | H4UC      | FA3              | (6)               | 85PP      |
| Pseudorandom Nu | umber Generator: |           | FA2              | (7)               | 46C7      |
| CLRPRNL         | U105(9)          | PLHF      | FA1              | (8)               | 7H94      |
| GDBOUTL         | (12)             | OHPC      | FA0              | (9)               | 4282      |
| [               | (11)             | 284A      |                  |                   |           |
| PRN             | (14)             | 5828      | IDB15            | U516(2), U515(19) | 77HP      |
|                 | U106(11)         | 8H75      | IDB14            | U516(3), U515(18) | F091      |
|                 | (5)              | 21U9      | IDB13            | U516(4), U515(17) | HPH7      |
|                 | U107(11)         | 5H4P      | IDB12            | U516(5), U515(16) | UA51      |
|                 | U108(11)         | F61F      | IDB11            | U516(6), U515(15) | 053U      |
|                 | U108(4)          | PC89      | IDB10            | U516(7), U515(14) | 349C      |
|                 | U408(11)         | FA70      | IDB9             | U516(8), U515(13) | P682      |
| Test Bit Mux:   |                  |           | IDB8             | U516(9), U515(12) | 9376      |
| DIVBY4          | U206(2)          | 1384      | IDB7             | U514(2), U513(19) | 1180      |
| DIVBY2          | (1)              | H4UC      | IDB6             | U514(3), U513(18) | 9746      |
| PASSDONE        | (15)             | 6052      | IDB5             | U514(4), U513(17) | 5204      |
| PRN             | (13)             | 5828      | IDB4             | U514(5), U513(16) | U7P8      |
|                 | (5)              | 6506      | IDB3             | U514(6), U513(15) | 001P      |
|                 |                  |           | IDB2             | U514(7), U513(14) | 06F0      |
|                 |                  |           | IDB1             | U514(8), U513(13) | F8F2      |
|                 |                  |           | IDB0             | U514(9), U513(12) | 31HP      |
|                 |                  |           |                  |                   |           |

| Signal name  | IC (pin) | Signature | Signal name       | IC (pin) | Signature |
|--------------|----------|-----------|-------------------|----------|-----------|
| Counter One: |          |           | Counter Two Conti | nued:    |           |
|              | U209(13) | UU11      | IDB4              | (15)     | U7P8      |
|              | (12)     | OCA2      | LDCTR2L           | (11)     | 5P63      |
|              | (11)     | A172      |                   | (4)      | 21AP      |
| LDCTR2L      | (10)     | 5P63      | ] [               | (5)      | 3HA8      |
| PASSDONE     | (3)      | 6052      | ] [               | (13)     | CPH4      |
| DIDONE       | (2)      | A7C1      | ] [               | (12)     | PP8P      |
|              | (1)      | A512      | 7                 | (7)      | 5603      |
|              | (15)     | U9F5      | 1                 | (6)      | U4C2      |
| Γ            | U210(13) | UU11      | 1 [               | (2)      | 662A      |
| T            | (11)     | A172      | 1 [               | (3)      | 83C6      |
| LDCTR2L      | (10)     | 5P63      | IDB3              | U409(9)  | 001P      |
|              | (9)      | OCA2      | IDB2              | (10)     | 06F0      |
|              | (7)      | 9580      | IDB1              | (1)      | F8F2      |
| -            | (6)      | C207      | IDB0              | (15)     | 31HP      |
| Ī            | (5)      | 859C      | LDCTR2L           | (11)     | 5P63      |
|              | (4)      | 6530      | DEC2L             | (4)      | U42A      |
| ľ            | (3)      | P490      | INC2L             | (5)      | A2AH      |
| F            | (2)      | A634      | 1                 | (13)     | 21AP      |
| F            | (1)      | 4048      | 1 [               | (12)     | 3HA8      |
|              | (15)     | 60H1      |                   | (7)      | UAH2      |
| Counter Two: |          |           | <u>a</u>          | (6)      | 9AC9      |
| IDB11        | U411(9)  | 053U      | 1                 | (2)      | 2813      |
| IDB10        | (10)     | 349C      |                   | (3)      | FH82      |
| IDB9         | (1)      | P682      |                   |          |           |
| IDB8         | (15)     | 9376      | 1                 |          |           |
| LDCTR2L      | (11)     | 5P63      | 1                 |          |           |
|              | (4)      | CPH4      | 1                 |          |           |
| Ī            | (5)      | PP8P      | 1                 |          |           |
| [            | (13)     | 3044      | 1                 |          |           |
|              | (12)     | 9PAC      | 1                 |          |           |
|              | (7)      | 80UA      |                   |          |           |
|              | (6)      | 4673      | 1                 |          |           |
| ľ            | (2)      | 3800      | 7                 |          |           |
|              | (3)      | 6НОА      | · ·               |          |           |
| ID87         | U410(9)  | 1180      | 7                 |          |           |
| IDB6         | (10)     | 0746      | 1                 |          |           |
| IDB5         | (1)      | 5204      | 7                 |          |           |

| Signal name     | IC (pin) | Signature | Signal name       | IC (pin)          | Signature |
|-----------------|----------|-----------|-------------------|-------------------|-----------|
| Counter MUX:    |          |           | Butterfly Type PL | A (U207):         |           |
| DIDONE          | U311(5)  | A7C1      |                   | U207(1)           | A7C1      |
|                 | (11)     | A512      |                   | (2)               | A512      |
| Γ               | (14)     | U9F5      |                   | (3)               | U9F5      |
| Ţ               | (6)      | 4673      |                   | (4)               | 9580      |
| Γ               | (10)     | 3800      |                   | (5)               | C207      |
|                 | (13)     | 6HOA      |                   | (6)               | 859C      |
| ACB10           | (7)      | 7U15      |                   | (7)               | 6530      |
| ACB9            | (9)      | 7FA4      |                   | (8)               | P490      |
| ACB8            | (12)     | A033      | LEV0              | (9)               | H441      |
| CTR1ENL         | (1)      | 4POA      | LEV1              | (11)              | F167      |
|                 | U310(2)  | 9580      | LEV2              | (12)              | PACU      |
|                 | (5)      | C207      | TYPE2BF           | (15)              | 44CP      |
| ļ               | (11)     | 859C      | Butterfly Subrout | tine Address ROM: |           |
|                 | (14)     | 6530      | SCALE0            | U502(10)          | 8H36      |
|                 | (3)      | 5603      | SCALE1            | (1.1)             | C1CP      |
| Ĭ               | (6)      | U4C2      | PASSDONE          | (12)              | 6052      |
|                 | (10)     | 662A      | TYPE2BF           | (13)              | 44CP      |
|                 | (13)     | 83C6      | BFSUBADL          | (15)              | U8F9      |
| ACB7            | (4)      | 86H2      | IDB0              | (1)               | 31HP      |
| ACB6            | (7)      | 0169      | IDB1              | (2)               | F8F2      |
| ACB5            | (9)      | OCH4      | IDB2              | (3)               | 06F0      |
| ACB4            | (12)     | 0152      | IDB3              | (4)               | 001P      |
| CTR1ENL         | (1)      | 4POA      | IDB4              | (5)               | U7P8      |
| Ī               | U309(2)  | P490      | IDB5              | (6)               | 5204      |
|                 | (5)      | A634      | IDB6              | (7)               | 0756      |
| Ī               | (11)     | 4048      | IDB7              | (9)               | 1180      |
|                 | (14)     | 60H1      |                   |                   |           |
| ·               | (3)      | UAH2      |                   |                   |           |
|                 | (6)      | 9AC9      |                   |                   | •         |
| ļ t             | (10)     | 2813      |                   |                   |           |
|                 | (13)     | FH82      |                   |                   |           |
| ACB7            | (4)      | 349A      |                   |                   |           |
| ACB6            | (7)      | 6AH1      | 7                 |                   |           |
| ACB5            | (9)      | 1U59      |                   |                   |           |
| ACB4            | (12)     | 4282      |                   |                   |           |
| CTR1ENL         | (1)      | 4POA      | 7                 | :                 |           |
| (ACB is address |          |           |                   |                   |           |

| Signal name       | IC (pin)                                              | Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Signal name     | IC (pin)           | Signature |
|-------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|-----------|
| Address Translato | or:                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Coefficient ROM |                    |           |
| FFTWR             | U307(4)                                               | 9758                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FA0             | U412(2)            | 4282      |
| SWAP              | (5)                                                   | P41A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FA1             | (3)                | 7H94      |
|                   | (6)                                                   | A7C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FA2             | (4)                | 46C7      |
| ACB2              | U314(1)                                               | 6AH1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FA3             | (5)                | 85PP      |
| ACB4              | (2)                                                   | 0152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FA4             | (6)                | 444H      |
| ACB6              | (3)                                                   | 0169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FA5             | (7)                | F6C8      |
| ACB8              | (4)                                                   | A033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _]              | (19)               | 1411      |
|                   | (5)                                                   | H8A6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _               | (18)               | 2277      |
| LEV0              | (6)                                                   | H441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ]               | (17)               | 1683      |
| LEV1              | (7)                                                   | F167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 | (16)               | A57C      |
| LEV2              | (8)                                                   | PACU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7               | (15)               | U27A      |
| WINDPGL           | (9)                                                   | FU43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7               | (14)               | 6C31      |
| FFTWR             | (11)                                                  | 9758                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FA6             | U413(2)            | H289      |
| FA2               | (19)                                                  | 46C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FA7             | (3)                | 5C91      |
| FA4               | (18)                                                  | 444H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FA8             | (4)                | CPO4      |
| FA6               | (17)                                                  | H289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FA9             | (5)                | 1P6P      |
| FA8               | (16)                                                  | C904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FA10            | (6)                | 6739      |
| FA10              | (12)                                                  | 6739                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FA11            | (7)                | H351      |
| ACB1              | U313(1)                                               | 1U59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FA12            | (8)                | 08P8      |
| ACB3              | (2)                                                   | 349A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FA13            | (9)                | 3FU7      |
| ACB5              | (3)                                                   | OCH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LDCAL           | (11)               | 3H4O      |
| ACB7              | (4)                                                   | 86H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7               | (19)               | F186      |
| ACB9              | (5)                                                   | 7FA4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 | (18)               | PU20      |
| FA1               | (19)                                                  | 7H94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7               | (17)               | 2U40      |
| FA3               | (18)                                                  | 85PP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 | (16)               | 6AHA      |
| FA5               | (17)                                                  | F6C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7               | (15)               | 47HH      |
| FA7               | (16)                                                  | 5C91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 | (14)               | H351      |
| FA9               | (12)                                                  | 1P6P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 | (13)               | 08P8      |
| ACB0              | U307(12)                                              | 4282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7               | U315(10), U317(10) | 1411      |
| PASSBIT0          | (13)                                                  | 14AA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7               | U315(9), U317(9)   | 2277      |
| FAO               | (11)                                                  | 4282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1               | U315(8), U317(8)   | 1683      |
| (ACB— is addres   | The second control of the second second second second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | U315(7), U317(7)   | A57C      |
| FA— is FFT addre  | and the second second second                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | U315(6), U317(6)   | U27A      |
|                   | , do 500)                                             | <u> 2000-100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 -</u> | 1               | U315(5), U317(5)   | 6C31      |
|                   |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | U315(4), U317(4)   | F186      |
|                   |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | U315(3), U317(3)   | PU29      |
|                   |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | U315(25), U317(25) | 2U4O      |
|                   |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | U315(24), U317(24) | 6AHA      |
|                   |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | U315(21), U317(21) | 47HH      |
|                   |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | U315(23), U317(23) | H351      |
|                   |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | U315(2), U317(2)   | 08P8      |

| Signal name   | IC (pin)      | Signature |
|---------------|---------------|-----------|
| Coefficient R | OM continued: |           |
| IDB0          | U517(18)      | 31HP      |
| IDB1          | (17)          | F8F2      |
| IDB2          | (16)          | 06F0      |
| IDB3          | (15)          | 001P      |
| IDB4          | (14)          | U7P8      |
| IDB5          | (13)          | 5204      |
| IDB6          | (12)          | 0746      |
| IDB7          | (11)          | 1180      |
| IDB8          | U518(18)      | 9376      |
| IDB9          | (17)          | P682      |
| IDB10         | (16)          | 349C      |
| IDB11         | (15)          | 053U      |
| IDB12         | (14)          | UA51      |
| IDB13         | (13)          | HPH7      |
| IDB14         | (12)          | F091      |
| IDB15         | (11)          | 77HP      |

Return all jumpers to the normal (N) position (either position OK for J1).

### **FFT Signature Analysis Test THREE**

- 1. Disconnect the power cable.
- 2. Put the FFT board on an extender card. All jumpers should be in the normal (N) position.
- 3. Connect the power cable and turn ON power.
- 4. Connect the signature analyzer as described in table 8-25.

Table 8-25. FFT Signature Analyzer Setup THREE

| Signal | Polarity  | Connection |
|--------|-----------|------------|
| Ground |           | A9 J5-1    |
| Clock  | Pos edge* | A9 TP3*    |
| Stop   | Neg edge  | A9 J5-4    |
| Start  | Pos edge  | A9 J5-5    |

<sup>\*</sup> note change from Test Two

- 5. Move jumper J2 to the test (T) position.
- 6. Move jumper J1 to the TST1 position.
- 7. Press the reset switch on the CPU board (A2 S1).
- 8. When completed, return all jumpers to the normal (N) position (either position OK for J1).

Note

Steps 5, 6, and 7 activate the test.



Table 8-26. FFT Signature Analysis Test THREE

| Signal name    | IC (pin)               | Signature | Signal name | 1C (pin)           | Signature |
|----------------|------------------------|-----------|-------------|--------------------|-----------|
| 0.9            | U315(11), U517(2)      | 47FP      |             | Interface Outputs: |           |
|                | U315(12), U517(3)      | 3246      | GD15L       | U516(19), U515(2)  | 3347      |
| ,              | U315(13), U517(4)      | HA4U      | GD14L       | U516(18), U515(3)  | U9FH      |
|                | U315(15), U517(5)      | 903F      | GD13L       | U516(17), U515(4)  | 3347      |
|                | U315(16), U517(6)      | AP58      | GD12L       | U516(16), U515(5)  | U9FH      |
|                | U315(17), U517(7)      | 0011      | GD11L       | U516(15), U515(6)  | 3347      |
|                | U315(18), U517(8)      | C668      | GD10L       | U516(14), U515(7)  | U9FH      |
|                | U315(19), U517(9)      | 3F07      | GD9L        | U516(13), U515(8)  | 3347      |
|                | U317(11), U518(2)      | 6P1C      | GD8L        | U516(12), U515(9)  | U9FH      |
|                | U317(12), U518(3)      | POHU      | GD7L        | U514(19), U513(2)  | 3347      |
|                | U317(13), U518(4)      | CC3C      | GD6L        | U514(18), U513(3)  | U9FH      |
| Ì              | U317(15), U518(5)      | 4472      | GD5L        | U514(17), U513(4)  | 3347      |
|                | U317(16), U518(6)      | PHH1      | GD4L`       | U514(16), U513(5)  | U9FH      |
|                | U317(17), U518(7)      | ОННА      | GD3L        | U514(15), U513(6)  | 3347      |
|                | U317(18), U518(8)      | H231      | GD2L        | U514(14), U513(7)  | U9FH      |
|                | U317(19), U518(9)      | OHP6      | GD1L        | U514(13), U513(8)  | 3347      |
| PROMINL        | U517(1), U518(1)       | FA8A      | GD0L        | U514(12), U513(9)  | U9FH      |
| Global Address | Bus Interface Outputs: |           | Handshake:  |                    |           |
| GA16L          | U512(19)               | 3347      |             | U212(12)           | F59A      |
| GA15L          | (18)                   | 18C1      | FFTMG       | (13)               | FA8A      |
| GA14L          | (17)                   | 4UAU      |             | (11)               | 0010      |
| GA13L          | (16)                   | 7FH4      | FFTMR       | U211(12,13)        | 0000      |
| GA12L          | (15)                   | U839      | FFTWR       | U501(2)            | F59A      |
| GA11L          | (14)                   | A440      | REQGBL      | (3)                | FA8A      |
| GA10L          | (13)                   | 4020      | LDGDBRL     | U214(3)            | FA8A      |
| GA9L           | (12)                   | 15PP      | GR/GWL      | U211(8)            | 0010      |
| GA8L           | U511(19)               | 4PP9      | MGFFTL      | U215(13)           | 0000      |
| GA7L           | (18)                   | U5U7      | GDSL        | U214(2)            | FA8A      |
| GA6L           | (17)                   | 4291      | MRFFTL      | U211(11)           | FA8A      |
| GA5L           | (16)                   | 6F84      |             |                    |           |
| GA4L           | (15)                   | 3831      |             |                    |           |
| GA3L           | (14)                   | A997      | ]           |                    |           |
| GA2L           | (13)                   | FF53      |             |                    |           |
| GA1L           | (12)                   | P39F      |             |                    |           |

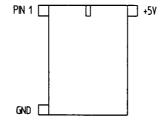
Return all jumpers to the normal (N) position when testing is complete.

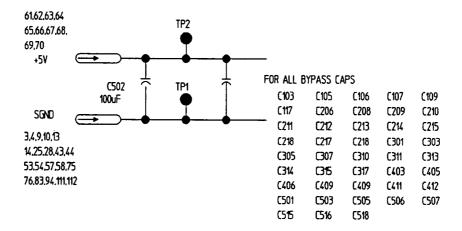
### **FFT Signal Waveforms**

The following table of illustrations are oscilloscope plots of digital signature analysis signals (CLOCK and START/STOP) at J5. These should appear on the test pins when the SA jumpers are in the positions specified in the waveform setup.

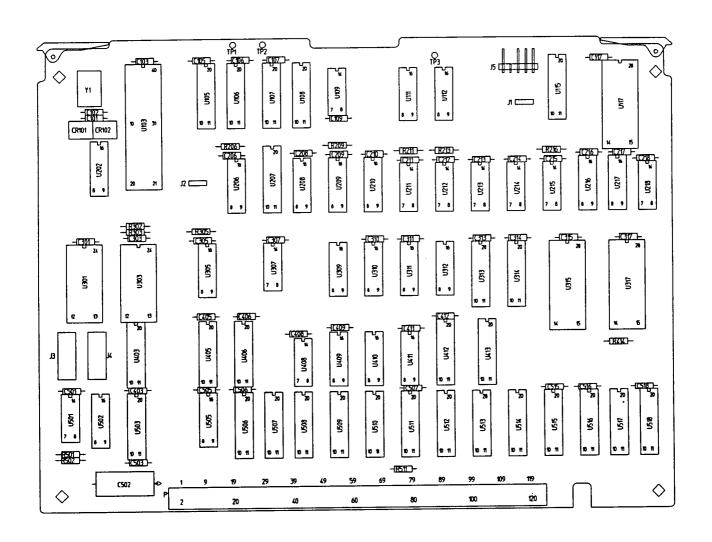
Table 8-27. FFT Signal Waveforms

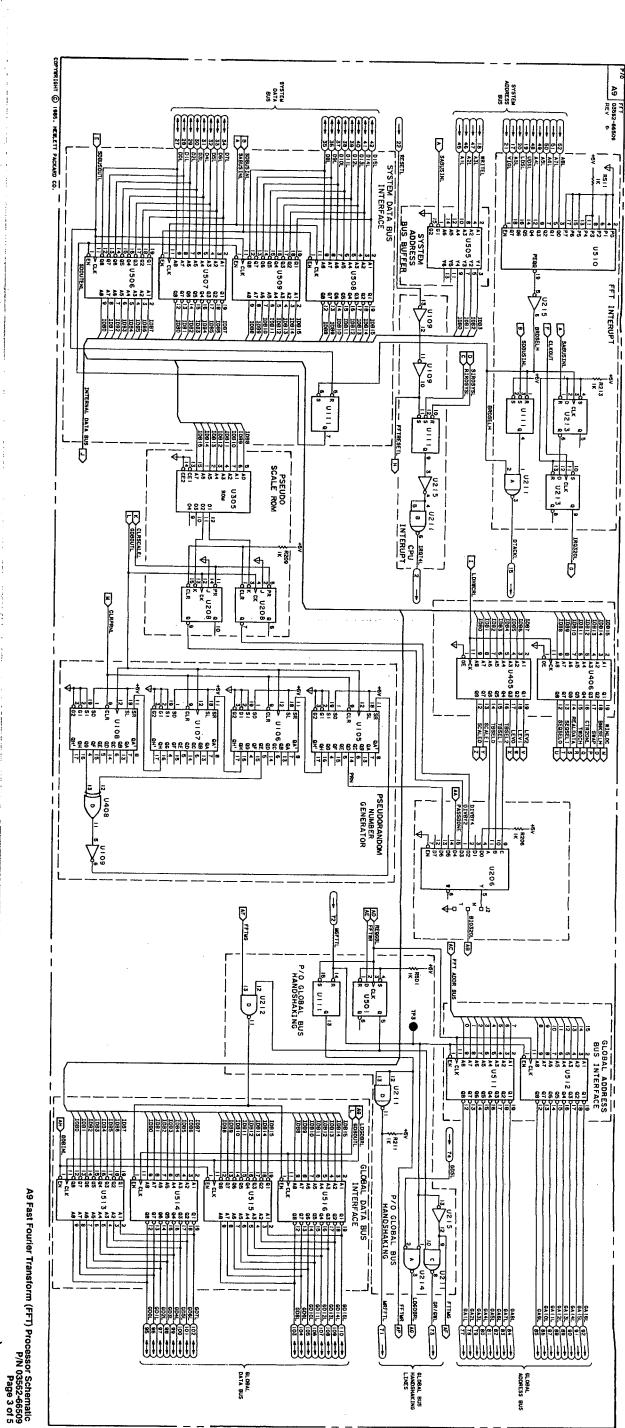
| Jumpers in norm                                               | al position                 |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------|-----------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                               | Setup                       | Parameters                     | Waveform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CLKOUT (5 MH<br>Signal at pin 3 of<br>(CLK on SA con<br>Scale | of J5                       | Time period<br>and pulse shape | CH1 CPLG=DC<br>CH1 = 108.mV/D1v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Timebase<br>Delta V                                           | 100 ns/div<br>5 V           |                                | avac handa h |
| Trigger<br>Coupling                                           | Ch 1<br>dc                  |                                | MT=CH1<br>MAIN= 100.nS/DIV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                               |                             |                                | #1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Put J2 in the test                                            | (T) position, J1 in the TS  | ST1 position and press t       | he reset button on the CPU board (A2 S1).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SRT/STP TST                                                   | 1 (1.4 Hz)                  | Time period and pulse shape    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Signal at pin 4 a<br>(SA connector)                           |                             |                                | +5Vdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Scale<br>Timebase<br>Delta V                                  | 1 V/div<br>500 ms/div<br>5V |                                | 0Vdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Trigger<br>Coupling                                           | Ch 1<br>dc                  |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                               |                             |                                | #2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Put J3 and J4 in                                              | the test position and J1    | in the TST2 position           | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SRT/STP TST                                                   | <del></del>                 | Time period and pulse shape    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Signal at pins 4<br>(DSA connecto                             |                             |                                | +5Vdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Scale<br>Timebase<br>Delta V                                  | 1 V/div<br>500 us/div<br>5V |                                | OVdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Trigger<br>Coupling                                           | Ch1<br>dc                   |                                | #3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

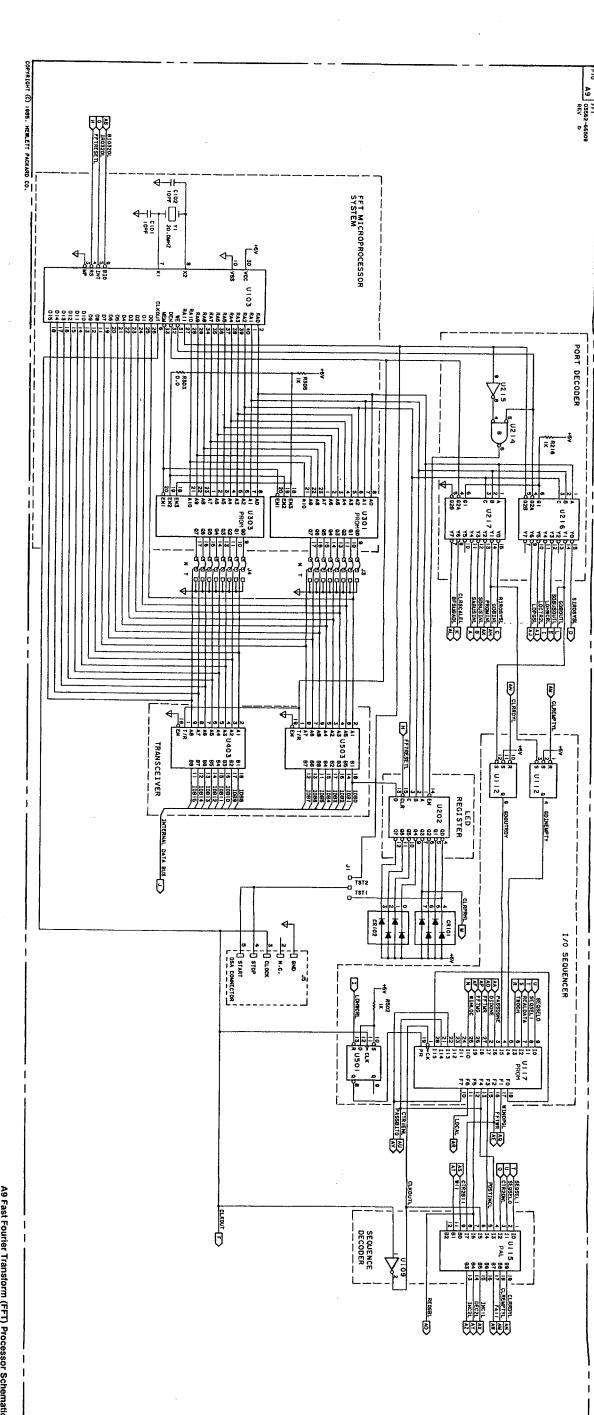

## **FFT After-Repair Adjustments and Tests**


Table 8-28. After-Repair Adjustments and Tests

| Perform the following:*       | Section     |
|-------------------------------|-------------|
| Diagnostic Tests:<br>Test All | VII         |
| Adjustments:<br>None          | <del></del> |
| Performance Tests:<br>None    | -           |


<sup>\*</sup>Return all jumpers to the normal (N) position.


ALL INTEGRATED CIRCUITS ARE CORNER POWERED EXCEPT THOSE SHOWN IN THE REFERENCE TABLE.CORNER POWERED ICS HAVE GROUND CONNECTED TO THE LOWER LEFT PIN, AND +5 V CONNECTED TO THE UPPER RIGHT PIN,REGARDLESS OF THE TOTAL PIN COUNT (e.g.,FOR A 16 PIN DIP, GROUND IS CONNECTED






A9 Fast Fourier Transform (FFT) Processor Ground and Power Chart P/N 03562-66509 Rev B Page 1 of 5







A9 Fast Fourier Transform (FFT) Processor Schematic P/N 03562-66509 Page 4 of 5

#### **A14 Mother Board**

The information in this section should be used to trace the interconnecting signals between the HP 3563A assemblies. All procedures assume the Fault Isolation procedures of Section VII have been used to determine which board has failed, and the Circuit Descriptions of Section VI are understood.

#### Warning



Service procedures described in this section are performed with the protective covers removed and power applied. Hazardous voltage and energy available at many points can, if contacted, result in personal injury. Servicing must be performed only by trained service personnel who are aware of the hazards involved (such as fire and electrical shock).

#### Caution



Do not insert or remove any circuit board in the HP 3563A with the line power turned on. Power transients caused by insertion or removal may damage the circuit boards. Many of the parts are static sensitive. Use the appropriate precautions when removing, handling, and installing all parts to avoid unneccessary damage.

#### **How to Use This Section**

#### Start

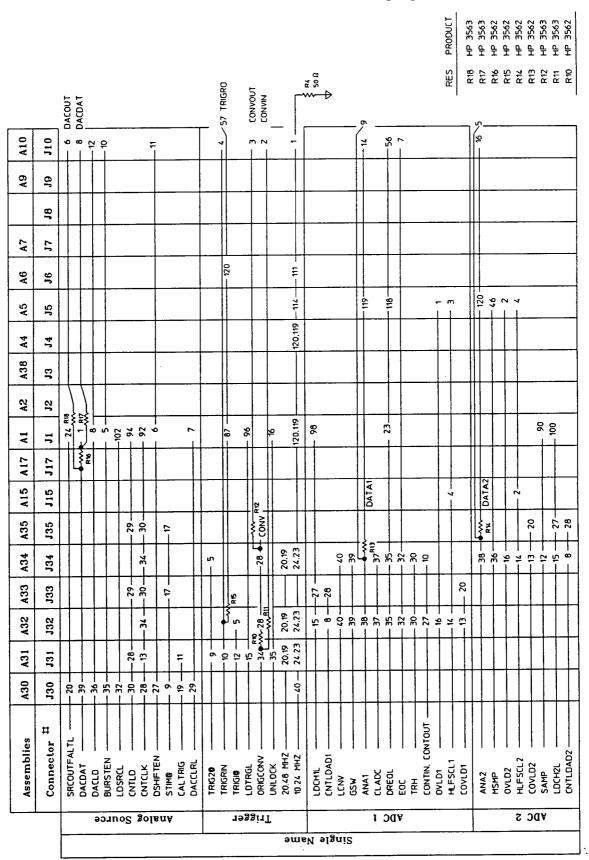
Table 8-29 lists all the inter-assembly signal connections. The signal names are listed vertically. The assembly designators and connector numbers are listed horizontally. When a signal is connected to an assembly, the edge connector pin number is entered in the table at the intersection point of the signal name and the assembly in the matrix. For example:

Pin Number →

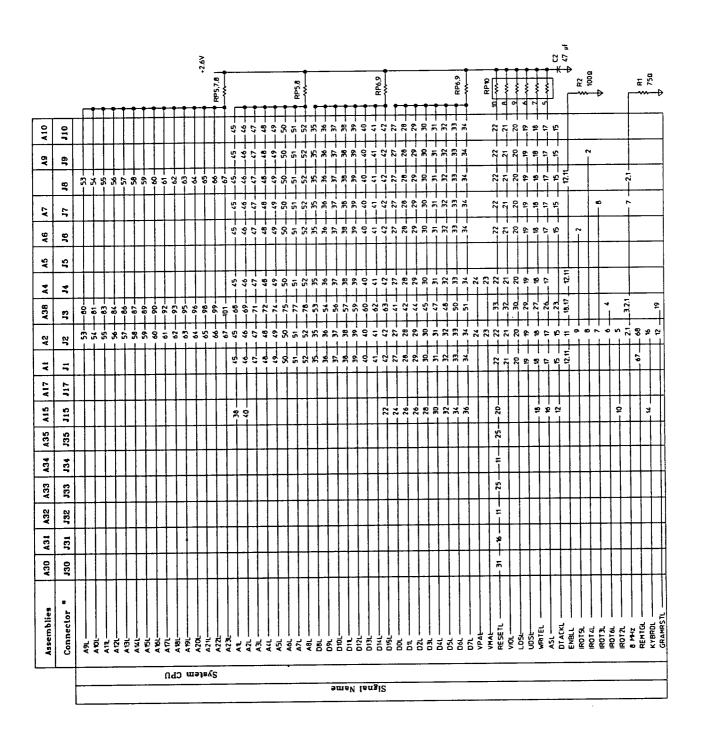
13

15

Signal

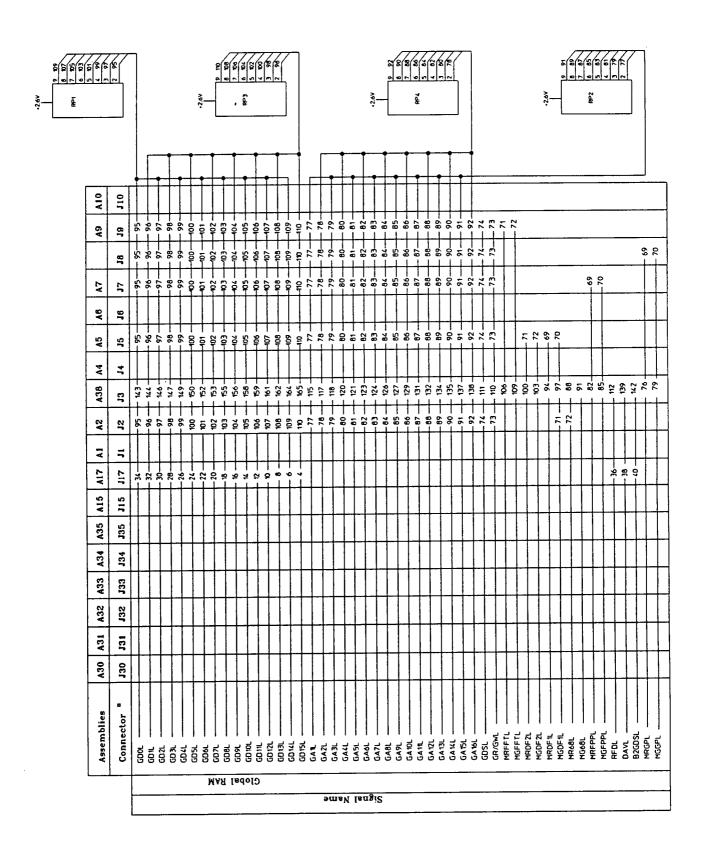

Signal

Origin (Shown in bold) Destination


Reference

The component locator follows table 8-29. For the location of cables and boards refer to figure 4-1 in Section IV.

Table 8-29. Control and Interconnecting Signals




|            |             |                                                                                               | Control and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Inter                    | rcon                | nect<br>┌₽   | ing (           | Signals continued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------|-------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------|--------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |             | (                                                                                             | o ā                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5 ₹<br><del>- (- )</del> | \                   | ) <u>¥</u>   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A10        | 110         | 96.85.84.<br>33.82.81.<br>90.79.78                                                            | 113-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |                     |              |                 | 108.107. 106.105. 104.103. 109.904. 97.96.95. 97.96.95. 97.86.56. 66.65.64. 66.56.4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| A9         | 19          | 70.69.68 86.85.84,<br>67.66.65 83.82.81,<br>64.63.62 80.79.78<br>61.60[.59]77.76,75           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                     |              |                 | 120,119, 116,175, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112,171, 112 |
|            | 18          | 10.9.8.<br>7.6.5.<br>4.3                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                     |              |                 | 118, 117, 116, 115, 116, 115, 117, 113, 117, 113, 117, 113, 117, 113, 117, 117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| A7         | 17          | 120,119.<br>116,117.<br>116,115.<br>112,113.<br>112,111.<br>68,67,66<br>65,64,63<br>62,61,60. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                     |              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A6         | 91          | 9.8.7                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                     |              |                 | 118,117, 94,9376<br>114,113, 75,72.71<br>100,109, 58,57.55<br>104,103, 64,43,54,53<br>104,103, 64,43,54,53<br>105,54,73,72,10,63,72,73<br>105,43,26,9,6,5,4,73<br>105,43,73,73,73,73,73,73,73,73,73,73,73,73,73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A5         | 15          | 9.8.7                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 117                      | 27<br>18<br>18      |              |                 | 116,115,<br>94,93,76<br>50,49,32<br>31,18,17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| A4         | 14          | 70.69.68<br>67.66.65<br>64.63.62<br>61.60.59<br>58.57                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                     |              |                 | 187.184, 118.117, 117.118, 175.178, 117.118, 175.178, 117.170, 108.107, 177.170, 108.107, 177.170, 108.107, 177.170, 108.107, 177.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108.170, 108 |
| A38        | 13          | 189,188.<br>185,185,<br>177,176.<br>174,173.<br>168,167.<br>128,125.<br>116,114.              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                     |              |                 | 9.93.7649.184. 118.11 75.70.69181.80. 114.11 75.70.69181.80. 114.11 75.70.69181.80. 114.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.69181.80. 117.11 75.70.60181.80. 117.11 75.70.60181.80. 117.11 75.70.60181.80. 117.11  |
| A2         | 75          | 16.115,<br>114,113,<br>112,111                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | - 119<br>- 120      | £ ;          | £<br>+          | 94,93,76<br>75,70,65<br>(4,4,3,26<br>(25,14,13,3)<br>10,4,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| A1         | 77          | 64.63.62<br>61.60.59.<br>58.57                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | 114,113             |              |                 | 18,117, 97,93,86, 98,53,86, 98,53,86, 98,53,86, 98,53,46, 98,53,46, 98,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | 118         |                                                                                               | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                     | <u>-</u><br> |                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| A17        | 117         | -1.2.3                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | $\perp \! \! \perp$ |              |                 | 63<br>odd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| A15        | 316         | <u> </u>                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                     |              |                 | ٥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| A15        | 315         |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                     |              |                 | 21-39<br>bad<br>conecti)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| A35        | 135         |                                                                                               | 8.10<br>2.4<br>7.9<br>1.3<br>23.21<br>14.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                     |              |                 | 26.24.22 33.31.29, 26.24.22 33.31.29, 26.24.22 33.31.29, 26.24.22 34.54.2. 20.25.22 39.15.12. 11.6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| A34        | 134         |                                                                                               | 7.9 –<br>1.3 –<br>- 2.4.6–                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                     |              |                 | 23.31.29, 20.55.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| A33        | 133         |                                                                                               | 8.10 – 2.4 – 7.9 – 1.3 – 1.3 – 23.21.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | $\perp \downarrow$  | $\coprod$    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A32        | 132         |                                                                                               | 1.13 - 2.4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>پ</u><br>پ            | $\perp \downarrow$  | $\prod$      |                 | 36.37.31.33.31.25.<br>25.22.21.21.18.17<br>18.17.4.<br>3.2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| A31        | 131         | 76.39.                                                                                        | 7.8 - 7.7 - 5.6 - 1.1 - 2.2 - 1.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - 2.2 - |                          | $\parallel$         |              | 82              | 36.33.236.32.31.3<br>21.81.7. 30.27.20.2<br>27.11.0. 75.22.21.2<br>8.7.6.5 18.7.4.<br>3.2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| A30        | 130         | 26.25.                                                                                        | 13.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          | $\coprod$           | <u> </u>     |                 | 36.33.22<br>21.18.77.<br>12.11.70.<br>8,7 6,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Assemblies | Connector " | +5S (W22)                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | .15S                | OTEMP        | PWRUP<br>SMPOUT | SGND(W23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            |             | , s                                                                                           | Power Suppl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          | sme/                | 1 lsn;       | Bis             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |             |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                     |              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



|            |             | _             |             |      |     |      |      |     |      | _     |       |         |     |        |      |         |         |           |               |           |          |         |       |     |            |     |           |                |               |                   |           |               |           |          |            |                 |      |      |      | _    |            |          |          |               |               |          | _             |               |               |           | _      |
|------------|-------------|---------------|-------------|------|-----|------|------|-----|------|-------|-------|---------|-----|--------|------|---------|---------|-----------|---------------|-----------|----------|---------|-------|-----|------------|-----|-----------|----------------|---------------|-------------------|-----------|---------------|-----------|----------|------------|-----------------|------|------|------|------|------------|----------|----------|---------------|---------------|----------|---------------|---------------|---------------|-----------|--------|
| A10        | J10         |               | 16          | 55   |     |      |      |     |      |       |       |         |     |        |      |         |         |           |               |           |          |         |       |     |            |     |           |                |               |                   |           |               |           |          |            |                 |      |      |      |      |            |          |          |               |               |          |               |               |               |           |        |
| 6¥         | 19          |               |             |      |     |      |      |     |      |       |       |         |     |        |      |         |         | _         |               |           |          |         |       |     |            |     |           |                |               |                   |           |               |           |          |            |                 |      |      |      |      |            |          |          |               |               |          |               |               |               |           |        |
|            | 18          |               |             |      |     |      |      |     |      |       |       |         |     |        |      |         |         |           |               |           |          |         |       |     |            |     |           |                |               |                   |           |               |           |          |            |                 |      |      |      |      |            |          |          |               |               |          |               |               |               |           |        |
| A7         | 17          |               |             |      |     |      |      |     |      |       |       |         |     |        |      |         |         |           |               |           |          |         |       |     |            |     |           |                |               |                   |           |               |           |          |            |                 |      |      |      |      |            |          |          |               |               |          |               |               |               |           |        |
| A6         | 96          |               |             | 116  | 115 |      |      |     |      |       | 7     |         |     | 87_107 | 78.7 |         | - F     | ר ו       | - 74          | - 108     | _112     | . 80    | - 62  | 19  |            | 7.2 | 7,        | 77 -           | - 69          | - 23              | - 65      | 99 -          | - 64      | 99       | - 59       | 58              | - 57 | - 56 |      | ; ;  | <u>.</u> ( | ا<br>ت ز | <u> </u> | ٠<br>ا        | 79 -          | 69 -     | - 71          | - 63          | _ 77 -        | - 79      |        |
| A5         | 15          |               |             |      |     |      |      | _   |      |       | 14 15 | <u></u> | · • | 51.66  | ,    | 7 (     | 2 6     | 7         | 98            | £         | 117      | 77      | 26 1  | 25  |            | 76  | 3 7       | <del>1</del> 1 | E<br>E        | <del>ا</del><br>8 | - 53      | 45            | 28        | 77       | 23         | 22              | 21   | 702  | 5    | ` `  | <u>.</u>   | <u>n</u> | ;        | L //          | 28            | E !      | 35            | 37            | - 17          | F 67      | _      |
| A4         | 4.          |               | 2           | 78   |     |      | 79   | 92  | , F  | <br>` |       | }       |     |        |      |         |         |           | T             |           |          |         | -     |     |            |     |           |                |               |                   |           |               |           |          |            |                 |      |      |      |      |            |          |          |               |               |          | +             | T             | Ť             |           |        |
| A38        | 13          |               |             |      |     |      |      |     |      |       |       |         |     |        |      |         |         | t         | -             | 1         |          |         |       |     |            |     |           |                |               | 1                 | +         |               |           | 1        |            |                 |      |      |      |      |            |          |          |               |               |          | $\dagger$     | $\dagger$     | †             | †         |        |
| A2 ,       | 32          |               |             |      |     |      |      |     |      |       |       |         |     |        |      |         | T       | T         |               | †         | 1        |         |       |     |            | -   |           | -              |               |                   | +         |               | +         | +        |            | 1               |      |      |      |      |            |          |          |               | T             |          | $\dagger$     | $\dagger$     | +             | $\dagger$ |        |
| A1 ,       | 71          | 2             | - 6         | 78   | 83  | 8    | 79   | 7,6 | 75   | -     |       |         |     |        | _    | _       | T       |           | +             | 1         | 1        |         |       |     |            |     |           | -              | T             | $\dagger$         | 1         | Ì             | 1         |          | 7          | 1               |      |      |      |      | -          | -        | -        |               | T             |          | $\dagger$     | $\dagger$     | †             | $\dagger$ |        |
| A17 /      | 117         |               |             |      | -   |      |      | _   |      |       |       |         |     |        |      |         |         | -         | 1             | †         | 1        |         |       |     |            |     |           |                |               | $\dagger$         | †         |               | 1         |          | 1          | -               |      |      |      | -    |            |          | -        | <del> -</del> | $\vdash$      | r        | $\dagger$     | Ť             | †             | $\dagger$ | -      |
| A15 4      | J15 J       |               |             |      |     |      |      |     | <br> | _     |       | -       |     |        |      |         |         | ŀ         | t             |           | 1        |         |       |     |            |     |           | <del> </del>   | +             | +                 | +         | 1             | †         | 7        |            |                 |      |      |      |      |            |          | <u>.</u> | H             | ŀ             | $\vdash$ | t             | +             | $\dagger$     | +         |        |
| A35 A      | J35 J       |               |             |      |     |      |      | -   |      | -     |       |         |     |        |      |         |         | $\dagger$ | $\dagger$     | $\dagger$ |          |         |       |     |            |     |           | $\mid$         | $\vdash$      |                   | $\dagger$ | +             | $\dagger$ | +        |            |                 |      |      |      |      |            |          |          |               |               | $\vdash$ | t             | t             | $\dagger$     | $\dagger$ |        |
| A34 A      | J34 J       | Н             | _           |      | _   |      |      |     | _    |       |       | _       |     |        | _    | -       | f       | t         |               | +         |          |         |       |     |            |     | _         |                | -             |                   | $\dagger$ |               | +         | +        | _          | 1               |      | _    |      | _    |            |          | ŀ        | -             | l             | -        | $\dagger$     | $\dagger$     | $\dagger$     | $\dagger$ |        |
| A33 A      | 133 J       |               |             | _    |     |      |      |     |      | _     | _     |         |     |        | _    |         | -       | +         | +             | +         | -        | _       |       |     |            |     |           | $\vdash$       | $\downarrow$  | 1                 | +         | +             | $\dashv$  | 1        |            |                 |      |      |      |      | -          | ŀ        | -        | $\vdash$      | -             |          | $\dagger$     | $\dagger$     | $\dagger$     | +         |        |
| A32 A      | 132 1:      | H             |             |      | _   |      |      |     | _    | _     | -     | -       |     | _      | _    | -       | +       |           | +             | +         | -        | _       |       |     | _          |     |           |                |               | +                 | +         | +             | 1         | 1        | 1          |                 |      |      |      |      | -          |          | -        | -             | -             | H        | $\frac{1}{1}$ | $\frac{1}{1}$ | +             | +         | _      |
|            |             | $\frac{1}{1}$ |             |      |     |      |      |     |      |       |       |         |     | _      | _    | -       | +       | +         | $\dagger$     | 1         | +        |         |       |     |            | _   | _         |                | ļ             | +                 | +         | $\frac{1}{1}$ | +         | +        | +          |                 |      |      | _    | _    | L          | -        | ├        | $\vdash$      | +             | -        | +             | +             | +             | +         | _      |
| 0 A31      | 0 J31       |               | _           |      |     |      |      | _   | -    | -     |       |         | _   |        |      | H       | 1       | +         | $\frac{1}{1}$ | +         |          |         |       |     | -          | _   |           | -              | $\frac{1}{1}$ | +                 | +         | 1             | +         |          |            |                 |      |      |      | _    |            | <u> </u> |          | +             | -             | $\vdash$ | +             | +             | +             | +         |        |
| A30        | 130         |               |             |      |     |      | _    | _   | _    | -     |       |         | _   |        |      | H       | +       | +         | +             | +         |          |         |       |     |            |     |           | -              |               | +                 | +         | +             |           | _        | -          |                 |      |      | _    | _    | H          | $\vdash$ | -        | $\downarrow$  | $\frac{1}{1}$ | $\vdash$ | +             | +             | $\frac{1}{1}$ | +         | _      |
| Assemblies | Connector # | DAFF! K       | NSKN        | REST | MON | NOAT |      | 200 | MA.  | NC K  |       | SYNC2   | S I |        |      | CHZBG1L | CH1861L | BLK3FULL  | BLK2FULL      | SYSCLK    | CHISTOPI | CHOCTOD | 20070 |     | LI IDIN IL |     | NOLKEMP 7 | BWRITEL        | MCLK          | BRESE1L           | CH2L0SEL  | CH1LOSEL      | FI TRST   | DMADTACK | NA DO A SI | PAULASE<br>PAVI | DAGL | BA3L | BAZL | BAIL | BLDSL      | BUDSL    | TRIGGER  | UNUSED1       | UNUSED2       | UNUSED3  | UNUSED4       | UNUSEDS       | UNISEDA       | UNUSEDS   | 110000 |
|            |             |               | <b>ə</b> o. | ın   | os  | 11   | s) i | Bi( | I    |       |       | _       |     |        | 19   | 11      | Ł       | 18        | Jis           |           |          | 1112    | AT.   | פו  | uß         | IC  |           |                |               |                   | ąu        | 00            | , J       | 31,      | ł (        | a               |      |      |      |      |            |          |          | _             |               |          |               | _             | _             | _         | _      |
|            |             |               |             |      |     |      |      |     |      |       |       |         |     |        |      |         |         |           |               |           |          |         | 14    | 1.0 |            | :5  |           |                |               |                   |           |               |           |          |            | _               |      |      |      |      |            |          |          |               |               |          |               |               | _             | _         | _      |

#### Control and Interconnecting Signals continued



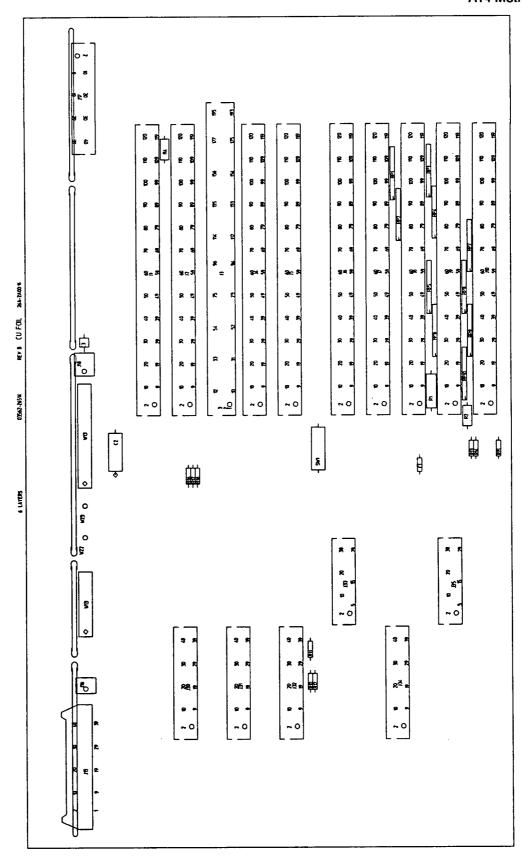



Figure 8-9. Motherboard Component Locator

# A15 Keyboard

The information in this section should be used to isolate faulty subblocks in the A15 Keyboard assembly. All procedures assume that you have used the Fault Isolation procedures in Section VII to determine this board has failed, and that you understand the Circuit Descriptions in Section VI.

# Warning



Service procedures described in this section are performed with the protective covers removed and power applied. Hazardous voltage and energy available at many points can, if contacted, result in personal injury. Servicing must be performed only by trained service personnel who are aware of the hazards involved (such as fire and electrical shock).

#### Caution



Do not insert or remove any circuit board in the HP 3563A with the line power turned on. Power transients caused by insertion or removal may damage the circuit boards. Many of the parts are static sensitive. Use the appropriate precautions when removing, handling, and installing all parts to avoid unneccessary damage.

#### **How to Use This Section**

Start troubleshooting by using figure 8-10. This procedure diagram describes the best

order to perform the troubleshooting tests based on the symptoms observed.

Reference The component locator and schematic follow the "After-Repair Adjustments and Tests"

table. For the location of cables and boards refer to figure 4-1 in Section IV.

After-Repair Use table 8-36 to determine which adjustments and tests need to be done to complete

instrument service.

Service HP 3563A A15 Keyboard

# **Troubleshooting Hints**

- 1. Several tests on the keyboard can be done from the front panel to isolate a failure.
- 2. Only +5 Vdc and ground are required to troubleshoot the A15 Keyboard assembly.
- 3. Disconnecting W10 from the A14 Mother Board puts the keyboard in a self-test mode.
- 4. If the name of a nonnumerical key or "Numbers Not Allowed" appears in the lower left of the display immediately after the power-up routine, there may be a stuck key or shorted trace on the keyboard. Start troubleshooting with the LEDs Test.
- 5. If the instrument does not respond to any key presses, there may be a stuck key. Start troubleshooting with the keyboard matrix subblock.

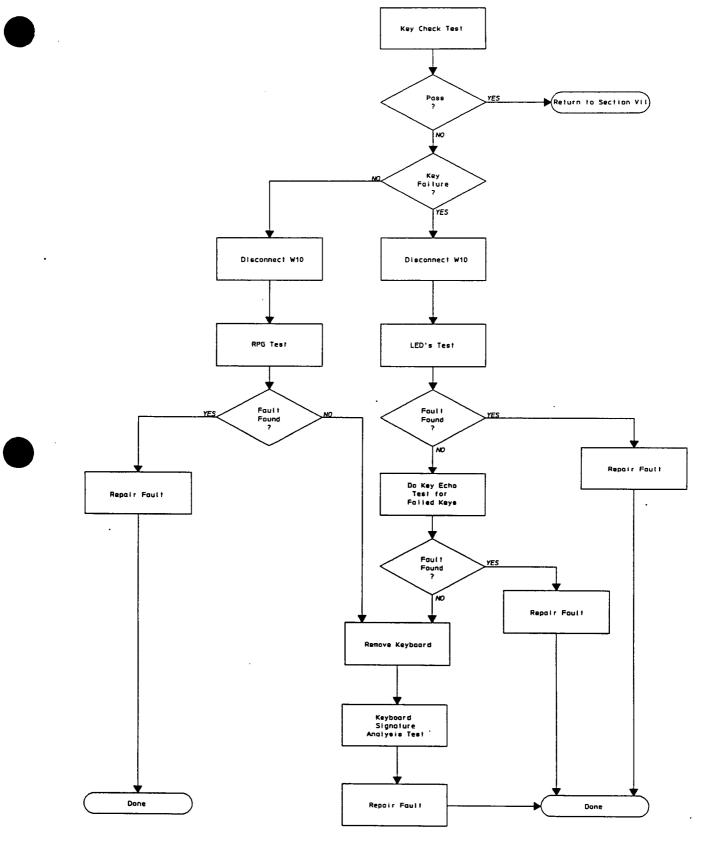



Figure 8-10. Keyboard Troubleshooting Procedure

### **Key Check Test**

This test is done from the front panel before removing the keyboard.

1. Press the HP 3563A keys as follows:

| [ Control ] |           |
|-------------|-----------|
| PRESET      | <br>RESET |

- 2. Press every key on the keyboard except the Entry group keys (numbers, punctuation marks, MARKER VALUE, BACK SPACE and arrow keys) and the softkeys. The correct name of the key pressed should appear in the bottom left corner of the display.
- 3. Press AVG and then press all the keys in the ENTRY group except MARKER VALUE, BACK SPACE and the arrow keys. The correct name of the key pressed should appear in the bottom left corner of the display.
- 4. Press SOURCE and then press all the softkeys. The correct name of the softkey pressed should appear in the bottom left hand corner of the display.
- 5. Press AVG and rotate the Entry RPG. The numbers in the bottom left of the display should change as the RPG is turned.
- 6. Press X and rotate the Marker RPG. The numbers in the top left of the display should change as the RPG is turned.
- 7. If test fails, disconnect W10 (procedure follows) and proceed with the LEDs self-test.
- 8. If test passes, the keyboard is working correctly, return to Section VII, "Fault Isolation."

## **Disconnecting W10**

- 1. Turn the HP 3563A OFF.
- 2. Disconnect the line power cable.
- 3. Remove the bottom cover.

# Warning



230 Vdc may be present in the main A18 Power Supply board even with the line switch in the off position and the power cord removed. Be extremely careful when working in the proximity of this area. This high voltage could cause serious personal injury if contacted.

4. Disconnect W10 from A14 J15.

# **Key Echo Test**

This is a standalone self-test. Only +5V and ground are required. This test can be done from the front panel or with the keyboard removed. After the LEDs Test the keyboard automatically enters the key echo mode. In the Key Echo Test, the keyboard processor determines the key code of the key pressed. It then turns on LEDs corresponding to the key code.

- 1. Place all jumpers in the normal (N) position.
- 2. Disconnect W10 from the A14 Mother Board.
- 3. Connect the power cable and press the line switch ON.
- 4. Reset the keyboard by putting A15 J9 to the test (T) position, then back to the normal (N) position.
- 5. When the LEDs Test is finished (all the lights remain on), press the keys one at a time. As a key is pressed, its key code should be echoed along the bottom row of LEDs. Refer to table 8-30 for front panel location of LEDs. The key code for each key is listed in table 8-31.



The only lights that should remain off after a key is pressed are the ones listed in table 8-31.

**Table 8-30. LEDs Front Panel Location** 

| Measuring | Ext Sample | A    | В    | Source | Ext<br>Trigger | Channel 1<br>Over<br>Range | Channel 2<br>Over<br>Range |
|-----------|------------|------|------|--------|----------------|----------------------------|----------------------------|
| CR8       | CR9        | CR10 | CR11 | CR14   | CR15           | CR16                       | CR18                       |

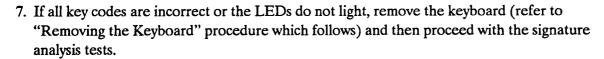
#### **LEDs Test**

This is a standalone self-test. Only +5V and ground are required. This test can be done from the front panel or with the keyboard removed. In the LEDs Test, the keyboard processor flashes the LEDs by using the data output register.

- 1. Disconnect the power cable.
- 2. Place all jumpers in the normal (N) position.
- 3. Disconnect W10 from from the A14 Mother Board.
- 4. Connect the power cable and press the line switch ON.
- 5. Reset the keyboard by putting A15 J9 to the test(T) position, then back to the normal (N) position.
- 6. To pass this test, the keyboard should respond as follows:
  - a. Beep the beeper and flash all the LEDs three except CR12, CR17, and CR19. These LEDs will flash on and stay on since they are controlled by other boards.
  - b. Beep the beeper and then light the LEDs one at a time in a pattern from left to right, top to bottom.
  - c. Beep the beeper again and turn all the lights ON.
- 7. If only one or a few of the LEDs fail to flash, start troubleshooting with the LEDs subblock.
- 8. If all the LEDs fail to flash, proceed with the Key Echo Test (procedure follows).
- 9. If test passes, the following subblocks are most likely good:
  - Data Output Register
  - Keyboard Bus
  - LEDs
  - Upper half of Device Decoder
  - EPROM Decoder
- 10. Go to the Key Echo Test.

Table 8-31. Key Codes

|                   | -         |             |          | =              | nting Key Co |             |                         |                         |
|-------------------|-----------|-------------|----------|----------------|--------------|-------------|-------------------------|-------------------------|
| VEV               |           | <del></del> | Blank me | ans light is o | off, X means | 1           | Chamald                 | Channel 2               |
| KEY               | Measuring | Ext Sample  | A        | В              | Source       | Ext Trigger | Channel 1<br>Over Range | Channel 2<br>Over Range |
|                   | CR8       | CR9         | CR10     | CR11           | CR14         | CR15        | CR16                    | CR18                    |
| ARM               |           |             | Х        | Х              | Х            | Х           |                         | Х                       |
| Α                 |           |             | X        | Х              | X            |             |                         |                         |
| В                 |           |             | X        | Х              | X            |             |                         | Х                       |
| A&B               |           |             | X        | X              | X            |             | X                       |                         |
| MEAS DISP         |           |             | X        | Х              | X            | X           |                         |                         |
| VIEW INPUT        |           |             | X        | Х              | X            |             | X                       |                         |
| STATE/TRACE       |           | X           |          |                |              |             |                         |                         |
| SINGLE            |           |             | X        | Х              | X            | X           | X                       |                         |
| UPPER LOWER       |           |             | Χ        | Х              | X            | X           | X                       | Х                       |
| FRONT BACK        |           | x           |          |                |              |             | Х                       |                         |
| COORD             |           |             | X        | Х              | X            |             | X                       | X                       |
| SCALE             |           | X           |          |                |              |             | X                       | x                       |
| UNITS             |           | x           |          | ļ              |              |             |                         | X                       |
| X                 |           |             |          | Х              | X            | X           | X                       |                         |
| Y                 |           |             |          | x              | Х            |             |                         |                         |
| XOFF              |           |             |          | X              | Х            | Х           |                         | X                       |
| YOFF              |           |             |          | X              | X            | X           | Х                       | X                       |
| SPCL MARKER       |           |             |          | ^              | X            | X           |                         | X                       |
| 7                 |           |             | X        |                |              |             | x                       | ,                       |
| 8                 |           |             | X        |                |              |             | ^                       |                         |
| 9                 |           |             | X        |                |              |             |                         | X                       |
| 4                 |           |             | X        |                | X            |             | x                       |                         |
| 5                 |           |             | X        |                | X            |             |                         |                         |
| 6                 |           |             | X        |                | X            |             |                         | x                       |
| 1                 |           |             | X        |                | X            | X           |                         | X                       |
| 2                 |           |             | X        |                | x            | x           | x                       | x                       |
| 3                 |           |             | X        |                | x            | x           | X                       | _ ^                     |
| 0                 |           |             | X        | x              | ^            | x           | _ ^                     | X                       |
| U                 |           |             | X        | x              |              | x           | x                       | x                       |
| •                 |           |             | x        | x              |              | x           | X                       | _ ^                     |
| ,<br>MARKER VALUE |           |             | X        | X              |              | <b>^</b>    | ^                       |                         |
| BACK SPACE        |           |             | X        | x              |              |             | x                       |                         |
|                   |           |             | X        | x              |              |             | ^                       | x                       |
| START             |           |             | ^        |                |              |             | ·                       | ^                       |
|                   |           |             |          | X              |              |             | x                       |                         |
| PAUSE CONT        |           |             |          | X              |              | X           | \ \ \                   |                         |
| AUTO SEQ<br>MATH  |           |             |          | X              |              | , X         | X                       | X<br>X                  |


# **Key Codes continued**

|              |           |            |               |                | nting Key Co |      |                         |                         |
|--------------|-----------|------------|---------------|----------------|--------------|------|-------------------------|-------------------------|
| KEY          | Measuring | Ext Sample | Blank me<br>A | ans light is c | Source       |      | Channel 1<br>Over Range | Channel 2<br>Over Range |
|              | CR8       | CR9        | CR10          | CR11           | CR14         | CR15 | CR16                    | CR18                    |
| AUTO MATH    |           |            |               | Χ              | X            |      | Х                       | Х                       |
| SAVE RECALL  |           |            |               | X              |              | X    | Χ                       | X                       |
| SPCL FCTN    |           |            |               | Χ              |              |      | İ                       | Х                       |
| PRESET       |           |            |               | Χ              | -            |      | Х                       |                         |
| SYNTH        |           |            |               | Χ              |              | X    |                         |                         |
| CURVE FIT    |           |            |               | Х              | x            | X    |                         |                         |
| MEAS MODE    | }         |            |               |                | X            | X    | X                       | x                       |
| SELECT MEAS  |           |            |               |                | X            |      |                         | x                       |
| WINDOW       |           |            |               |                | X            |      | X                       |                         |
| HELP         |           |            |               | Х              | X            |      | X                       |                         |
| AVG          |           |            |               |                | X            |      |                         |                         |
| FREQ         |           | ļ          |               |                | X            | X    | X                       |                         |
| SOURCE       |           |            |               |                | X            | X    |                         | x                       |
| RANGE        |           |            |               |                |              | X    | Х                       | X                       |
| INPUT COUPLE |           |            |               |                |              | ļ    |                         | X                       |
| SELECTTRIG   |           |            |               |                |              | X    |                         | X                       |
| DISC         |           |            |               |                |              | X    |                         |                         |
| PLOT         | -         |            |               |                | X            | X    |                         |                         |
| ENGR UNITS   |           |            |               | ]              |              |      |                         | [                       |
| CAL          |           |            |               |                |              | X    | X                       |                         |
| TRIG DELAY1  |           |            |               |                |              |      | X                       |                         |
| HP-IB FCTN   |           |            |               |                |              |      | X                       | X                       |
| LOCAL        |           |            |               |                | X            | -    | X                       | X                       |
| <b>†</b>     |           | X          |               |                |              | X    |                         |                         |
| 1            |           | X          |               |                |              | X    |                         | X                       |
| SOFTKEYS:    |           |            |               |                |              |      |                         |                         |
| SW 1         |           |            | X             |                |              | X    | X                       |                         |
| SW 2         |           |            | Х             |                |              | X    |                         | X                       |
| SW 3         |           |            | Х             |                |              | X    | X                       | X                       |
| SW 4         |           |            | Х             |                |              |      | X                       | X                       |
| SW 5         |           |            | X             |                |              | X    |                         |                         |
| SW 6         |           |            | X             |                | X            | X    |                         |                         |
| SW 7         |           |            | X             |                | X            | 1    | X                       | X                       |
| SW 8         |           |            | X             | X              |              |      | X                       | X                       |

Service HP 3563A

### A15 Keyboard

6. If only some of the key codes are incorrect, start troubleshooting with the keyboard matrix subblock.



8. If this test passes, the keyboard matrix, keyboard processor, and LED's subblocks are rating correctly. Start troubleshooting with the command register and the handshake/interrupt subblocks.

#### **RPG Test**

The RPG Test is a standalone self-test requiring only +5 Vdc and ground. This test is done from the front panel before removing the keyboard. After the LEDs Test the keyboard automatically enters the key echo mode making this test possible. In the RPG Test, the keyboard processor determines which direction an RPG has turned and then flashes CR4, CR5, CR6, and CR7 in a pattern matching the direction the RPG turns.

- 1. Place all jumpers in the normal (N) position.
- 2. Disconnect W10 from the A14 Mother Board.
- 3. Connect the power cable and press the line switch ON.
- 4. Reset the keyboard by putting A15 J9 to the test (T) position, then back to the normal (N) position.
- 5. Note if CR1 (X), CR2 (Y), and CR3 (Enabled) flash three times and finally turn on and stay on.
- 6. If CR1, CR2, and CR3 do not operate correctly, start troubleshooting with the LEDs subblock.
- 7. Turn the Markers group RPG. Observe CR4(Remote), CR5 (Listen), CR6(Talk), and CR7 (SRQ). The LEDs should light in the same direction as the RPG is turned.
- 8. If CR4, CR5, CR6, and CR7 do not operate correctly, start troubleshooting with the RPG circuit subblock.
- 9. Repeat steps 7 and 8 except turn the Entry group RPG.
- 10. If the test passes, the RPG circuit subblock and corresponding keyboard processor lines are most likely working correctly. Remove the keyboard (see "Removing the Keyboard" procedure which follows) and then proceed with the signature analysis test.

### Removing the Keyboard

Before removing the keyboard, disconnect W10 and run the LEDs Test, the Key Echo Test, and the RPG Test to determine the most likely failure.

- 1. Turn the line switch OFF.
- 2. Disconnect the power cord.
- 3. Remove the bottom cover.

# Warning



230 Vdc may be present in the main A18 Power Supply board even with the line switch in the off position and the power cord removed. Be extremely careful when working in the proximity of this area. This high voltage could cause serious personal injury if contacted.

- 4. Disconnect W10 from A14 J15 and W17 from A14 J16.
- 5. Remove the four screws in the bottom of the front panel casting.
- 6. Remove top cover.
- 7. Disconnect the following cables:

| Board       | Cable      | Connector |
|-------------|------------|-----------|
| A33 Input   | W1         | A33 J300  |
| A35 Input   | W1         | A35 J300  |
| A31 Trigger | <b>W</b> 5 | A31 J1    |
| A30 Source  | W4         | A30 J200  |

- 8. Remove the screws on the top and the sides of the front panel casting.
- 9. Remove the digital display's shield and the two screws on top of the digital display.
- 10. Remove wires x out, y out, and z out, which are on top of the digital display.
- 11. Pull out the digital display about one inch (2.54 cm).
- 12. The front panel can now be pulled away from the instrument's frame.
- 13. Disconnect RPG 1 from A15 J3 and RPG 2 from A15 J6.
- 14. Remove the 12 screws holding the keyboard to the front panel.
- 15. Connect +5 Vdc and ground to W17.

# **Keyboard Signature Analysis Tests**

These tests are used when the previous tests fail to find the problem.

- 1. Disconnect power cable.
- 2. Put the test jumpers A15 J4, A15 J5, A15 J7, in the test(T) position.
- 3. Disconnect W10 from the A14 Mother Board.
- 4. Connect the signature analyzer according to table 8-32.

Table 8-32. Keyboad Signature Analyzer Setup

| Signal | Polarity      | Connection |
|--------|---------------|------------|
| Ground |               | A15 J1-1   |
| Clock  | Negative Edge | A15 J1-3   |
| Stop   | Positive Edge | A15 J1-4   |
| Start  | Positive Edge | A15 J1-5   |

5. Connect the power cable and press the line switch ON.

# Table 8-33. Keyboard Signature Analysis Test ONE

Jumpers in test (T) position J4. J5. J7 Jumpers in normal (N) position: J2. J8. J9 Signature Analyzer Setup. Refer to table 8-32 +5 V Signature = 980H

| Component | Pin | Signature | Component | Pin | Signature |
|-----------|-----|-----------|-----------|-----|-----------|
| U106      | 2   | P75C      | U206      | 15  | 3799      |
|           | 3   | H843      | ].        | 16  | 2U06      |
|           | 4   | 38A3      | ]·        | 17  | 15U0      |
|           | 5   | 5PUU      | 7         | 18  | 3443      |
|           | 6   | 5H3U      | 1         | 19  | 9FA6      |
|           | 7   | 9U1H      | 7         | 21  | HFU1      |
|           | 8   | H182      | ]         | 22  | H182      |
|           | 9   | HFU1      |           | 23  | 9U1H      |
|           |     |           |           | 24  | 5H3U      |
|           |     |           |           | 25  | 5PUU      |
|           |     |           |           | 26  | 38A3      |
|           |     |           |           | 27  | H843      |
|           |     |           |           | 28  | P75C      |

# Table 8-34. Keyboard Signature Analysis Test TWO

Jumpers in test (T) position: J2. J4. J5. J7 Jumpers in normal (N) position: J8. J9 Signature Analyzer Setup: Refer to table 8-32 +5 V Signature = 980H

| Component | Pin | Signature | Component | Pin | Signature |
|-----------|-----|-----------|-----------|-----|-----------|
| U108      | 2   | 980H      | U302      | 9   | 980H      |
|           | 3   | 0000      | 1         | 8   | 0000      |
|           | 4   | 0000      | 7         | 7   | 980H      |
|           | 5   | 980H      | 7         | 6   | 980H      |
|           | 6   | 980H      |           | 5   | 980H      |
|           | 7   | 980H      |           | 4   | 0000      |
|           | 8   | 0000      |           | 3   | 0000      |
|           | 9   | 980H      | 7         | 2   | 980H      |
|           | 12  | P75C      | U308      | 7   | 3565      |
|           | 13  | H843      | 1         | 9   | 02UF      |
|           | 14  | 38A3      | 7         | 10  | 1A63      |
|           | 15  | 5PUU      |           |     |           |
|           | 16  | 5H3U      | 7         |     |           |
|           | 17  | 9U1H      | 7         |     |           |
|           | 18  | H182      | 7         |     |           |
|           | 19  | HFU1      |           |     |           |
| U208      | 9   | 9008      |           |     |           |
|           | 10  | 0U33      | 1         |     |           |
|           | 11  | P1AU      | 1         |     |           |
|           | 13  | 5PFC      |           |     |           |
|           | 14  | 11U0      |           |     | `         |
|           | 15  | C529      |           |     |           |
|           | 16  | 189F      |           |     |           |
|           | 17  | 9HC9      | 7         |     |           |

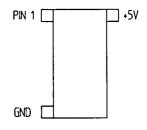
## Table 8-35. Keyboard Signature Analysis Test THREE

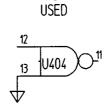
Jumpers in test (T) position: J2. J4. J5. J7 Jumpers in normal (N) position: J8. J9 Signature Analyzer Setup: Refer to table 8-32 +5 V Signature = 980H

| Component | Pin | Signature |
|-----------|-----|-----------|
| J308      | 12  | 3565      |
|           | 13  | 02UF      |
|           | 14  | 1A63      |
|           | 15  | C5U7      |

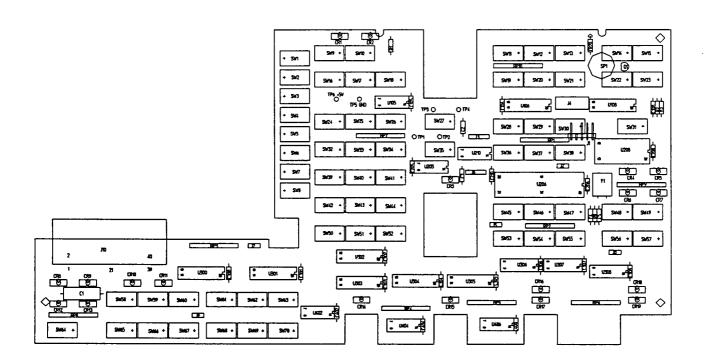
# **Keyboard After-Repair Adjustments and Tests**

Table 8-36. After-Repair Adjustments and Tests

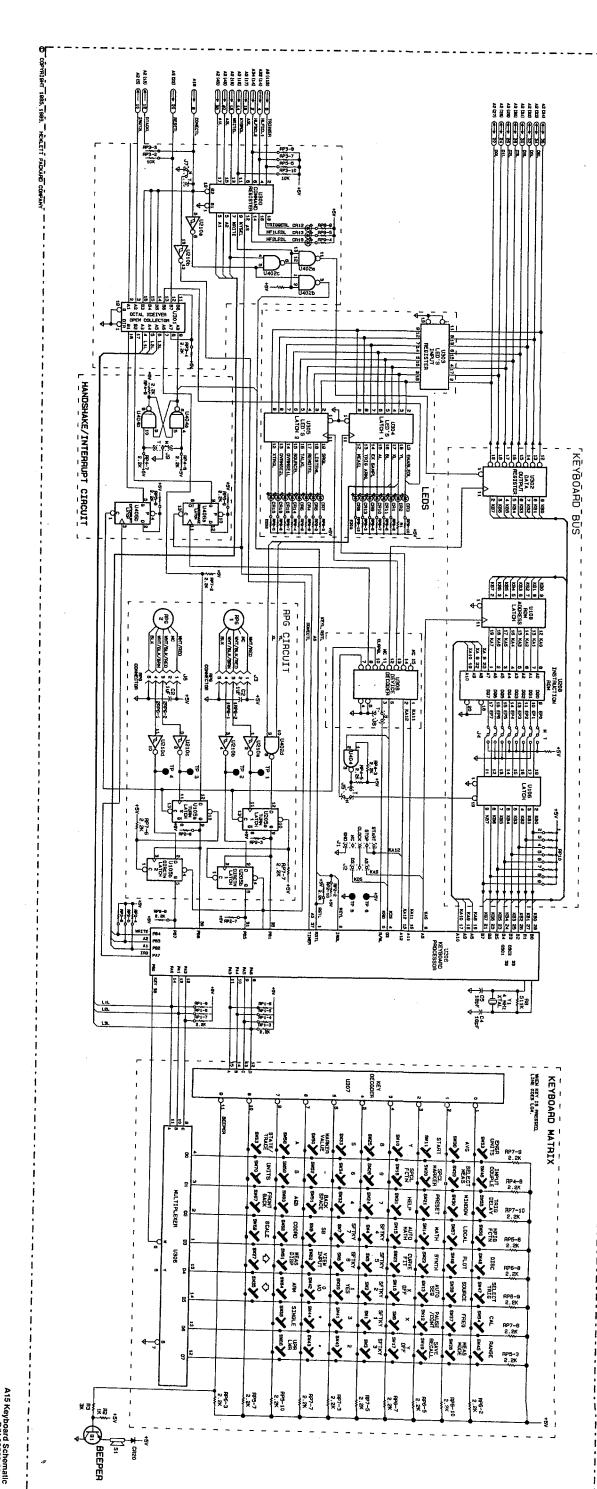

| Perform the following:*        | Section      |
|--------------------------------|--------------|
| Key Check Test (A)             | VIII         |
| Diagnostic Tests:<br>Test All  | VII          |
| Adjustments:<br>None           |              |
| Operational Verification: None | <del>_</del> |
| Performance Tests: None        | _            |


<sup>\*</sup>Return all jumpers to the normal (N) position

## REFERENCE TABLE


| IC            | GND         | +50   | CAPS |  |
|---------------|-------------|-------|------|--|
| U105          | 7           | 14    | C105 |  |
| U106          | 1,10        | 20    | C106 |  |
| U108          | 10          | 20    | C108 |  |
| U210          | 7           | 14    | C210 |  |
| U205          | 7           | 14    | C205 |  |
| U206          | 20          | 40    | C206 |  |
| U208          | 12<br>18.20 | 21,24 | C208 |  |
| U300          | 1,10        | 20    | C300 |  |
| U301          | 1<br>19.10  | 20    | C301 |  |
| U302          | 10          | 20    | C302 |  |
| U303          | 1<br>19.10  | 20    | C303 |  |
| U304          | 1,10        | 20    | C304 |  |
| U <b>30</b> 5 | 1,10        | 20    | C305 |  |
| U306          | 7,8         | 16    | C306 |  |
| U307          | 8           | 16    | C307 |  |
| U308          | 8           | 16    | C308 |  |
| U402          | 7           | 14    | C402 |  |
| U404          | 7           | 14    | C404 |  |

ALL INTEGRATED CIRCUITS ARE CORNER POWERED EXCEPT THOSE SHOWN IN THE REFERENCE TABLE.CORNER POWERED ICS HAVE GROUND CONNECTED TO THE LOWER LEFT PIN, AND +5 V CONNECTED TO THE UPPER RIGHT PIN, REGARDLESS OF THE TOTAL PIN COUNT (e.g.,FOR A 16 PIN DIP, GROUND IS CONNECTED TO PIN 8 AND +5 V IS CONNECTED TO PIN 16).






NOT



A15 Keyboard Component Locator P/N 03562-66515 Rev D Page 2 of 3



A15 Keyboard Schematic P/N 03562-66515 Page 3 of 3

# A18 Power Supply Assembly

The information in this section should be used to isolate faulty subblocks in the A18 power supply assembly. All procedures assume that you have used the Fault Isolation procedures in Section VII to determine this board has failed, and that you understand the Circuit Descriptions in Section VI.

### Warning



Service procedures described in this section are performed with the protective covers removed and power applied. Hazardous voltage and energy available at many points can, if contacted, result in personal injury. Servicing must be performed only by trained service personnel who are aware of the hazards involved (such as fire and electrical shock).

#### Caution



Do not insert or remove any circuit board in the HP 3563A with the line power turned on. Power transients caused by Insertion or removal may damage the circuit boards. Many of the parts are static sensitive. Use the appropriate precautions when removing, handling, and installing all parts to avoid unneccessary damage.

#### **How to Use This Section**

Start troubleshooting by using figure 8-11. This procedure diagram describes the best

order to perform the troubleshooting tests based on the symptoms observed.

Reference The component locator and schematic follow the "After-Repair Adjustments and Tests"

table. For the location of cables and boards refer to figure 4-1 in Section IV.

**Verify** Use table 8-37 to verify the power supply is operating correctly. Use the oscilloscope

waveforms in table 8-38 to see correct operation at various test points in the assembly.

After-Repair Use table 8-39 to determine which adjustments and tests need to be done to complete

instrument service.

### **Troubleshooting Hints**

- 1. The power supply must have a load to operate. Putting jumper A18 J100 in the test position provides a load for the +5V supply. The secondary connectors W11 (rear of display unit), W13 (A18 J1), W16(A18 J400), W22, and W23 can be disconnected and the power supply serviced independently of the other boards.
- 2. If the power supply intermittently powers down or fails to turn on, check the powerdown circuit. A18 R1 may be out of adjustment. Refer to Section III for the adjustment procedure.
- 3. If the instrument cold starts but then fails to turn on when power is cycled later, the most likely cause is the pulse width modulator (U101).

Table 8-37. Power Supply Nominal Values
Return Location is A18 TP13

| Supply Name | Output Location | Nominal Voltage | Voltage Tolerance | Ripple Tolerance |
|-------------|-----------------|-----------------|-------------------|------------------|
| +30V        | A18 J1-1        | +30V            | ± 1.8V            | 10 mV            |
| - 30V       | A18 J1-2        | - 30V           | ± 1.8V            | 10 mV            |
| +15A        | A18 J1-3        | +15V            | ± 0.9V            | 10 mV            |
| - 15A       | A18 J1-4        | - 15V           | ± 0.9V            | 10 mV            |
| +5S         | A18 J1-5        | +5V*            | ± 0.3V            | 50 mV            |
| +2.6V       | A18 J1-6        | +2.6V           | ± 0.16V           | 50 mV            |
| +8S1        | A18 J1-7        | +8V             | ± 0.48V           | 25 mV            |
| +8\$2       | A18 J1-8        | +8V             | ± 0.48V           | 25 mV            |
| +15S        | A18 J1-9        | +15V            | ± 0.9V            | 25 mV            |
| - 15S       | A18 J1-10       | - 15V           | ± 0.9V            | 25 mV            |

<sup>\*</sup>Note: If secondary connectors are disconnected and J100 is in test (T) position, the +5S supply equals  $+5.2 \pm 0.1V$ .

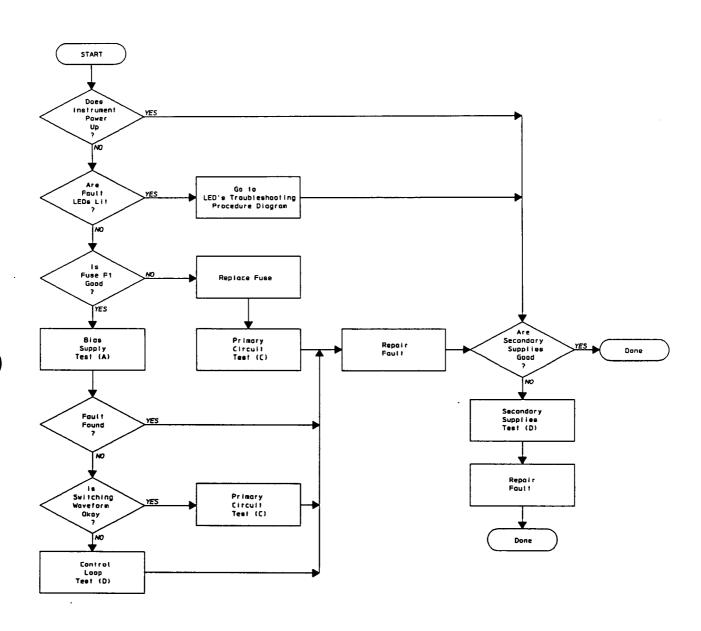



Figure 8-11. Power Supply Troubleshooting Procedure Diagram

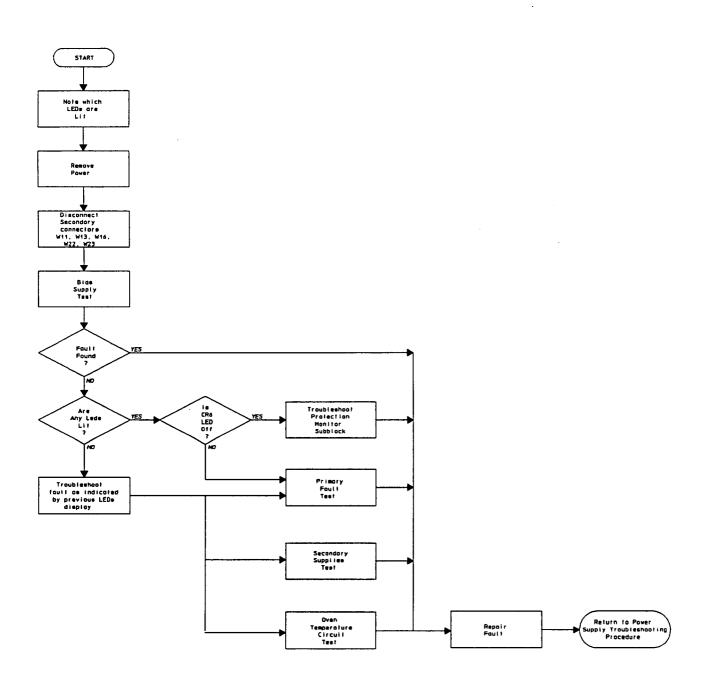



Figure 8-12. Fault LEDs Troubleshooting Procedure Diagram

# **Bias Supply Test**

1. Disconnect the power cord from the rear panel. Remove the bottom cover and the power supply shield of the HP 3563A.

### Warning



Even with power removed, energies capable of personal injury are present in this circuit. With the jumpers in the TEST position, these voltages will discharge to relatively safe levels after approximately sixty seconds.

- 2. Connect the power cable and press the line switch ON.
- 3. Connect the voltmeter negative terminal to the HP 3563A chassis.
- 4. Connect the voltmeter positive terminal to A18 TP11. The dc voltage should be  $+12 \pm 0.72$ V.
- 5. Connect the voltmeter positive terminal to A18 TP10. The dc voltage should be  $-12 \pm 0.72$ V.
- 6. If this test fails, troubleshoot the bias supply subblock back to the line filter.
- 7. If the test passes, the bias supply subblock is all right. Return to the troubleshooting procedure diagrams.

# **Primary Fault Test**

1. Disconnect the power cord from the rear panel. Remove the bottom cover and the power supply shield of the HP 3563A.

### Warning



Even with power removed, energies capable of personal injury are present in this circuit. With the jumpers in the TEST position, these voltages will discharge to relatively safe levels after approximately sixty seconds.

- 2. Using insulated, needle-nose pliers, set jumpers A18 J401, A18 J402, and A18 J100 to the test (T) position. It is not necessary for A18 J100 to have a jumper. Connect center pin and pin closest to the center of the instrument for the test (T) position.
- 3. Connect the voltmeter from the gate to drain of A18 Q400. Note resistance measurement.
- 4. Connect the voltmeter from the gate to drain of A18 Q401. Note resistance measurement.
- 5. If the resistance measurement of either FET is equal to or less than 20 k, replace the FET. Check the following resistors and replace any that are not the correct-value:

| Resistor | Value                 |  |
|----------|-----------------------|--|
| A18 R409 | 18 ± 1 Ω              |  |
| A18 R410 | $3.9k \pm 200 \Omega$ |  |
| A18 R403 | 18 ± 1 Ω              |  |
| A18 R404 | $3.9k \pm 200 \Omega$ |  |

6. Set jumpers A18 J401 and A18 J402 to normal position and the rear panel voltage selector switch to 115V.

# Caution



If the rear panel voltage selector switch is changed from the 220V position to the 115V position, it must be changed back after completing this test.

- 7. Connect the triple output supply to the bias supply subblock as follows:
  - +15 Vdc to (+) side of A18 C107
  - 15 Vdc to (-) side of A18 C100
  - +5 Vdc to A18 U2 pin 4 Ground to A18 TP13
- 8. Check Waveform #4 at A18 TP5 and A18 TP6. If the waveforms are incorrect, go to the "Control Loop Test" procedure.
- 9. Connect the variable ac power supply to the power line connector. Set supply to 25  $\pm 2$  Vac.
- 10. Check Waveforms #5, #6, and #8. If the waveforms are incorrect, troubleshoot the primary transformer and diode circuits.
- 11. If the Waveforms #5, #6, and #8 are all right, connect the voltmeter to the +5V regulator A18 U502 pin 1.
- 12. Slowly increase the variable ac power supply until A18 U502 regulates or the variable ac power supply reaches 129 Vrms.
- 13. If the voltmeter reading is greater than 5.3 Vdc or A18 U502 did not regulate, go to the "Control Loop Test".
- 14. If the voltmeter reading is  $5 \pm 0.3$  Vdc, go to the "Slow Start Test".

# Caution



If the rear panel voltage selector switch was changed from the 220V position to the 115V position, it must be changed back to the 220V position.

# **Primary Circuit Test**

1. Disconnect the power cord from the rear panel. Remove the bottom cover and the power supply shield of the HP 3563A.

# Warning



Even with power removed, energies capable of personal injury are present in this circuit. With the jumpers in the TEST position, these voltages will discharge to relatively safe levels after approximately sixty seconds.

- 2. Using insulated, needle-nose pliers, set jumpers A18 J401 and A18 J402 to the test(T) position.
- 3. Connect the voltmeter from the gate to drain of A18 Q400. Note resistance measurement.
- 4. Connect the voltmeter from the gate to drain of A18 Q401. Note resistance measurement.
- 5. If the resistance of either FET is equal to or less than 20 k $\Omega$ , replace the FET. Check the following resistors and replace any that are not the correct value:

| Resistor | Value                 |
|----------|-----------------------|
| A18 R409 | 18 ± 1 Ω              |
| A18 R410 | $3.9k \pm 200 Ω$      |
| A18 R403 | 18 ± 1 Ω              |
| A18 R404 | $3.9k \pm 200 \Omega$ |

- 6. Set jumpers A18 J401 and A18 J402 to normal position and the rear panel voltage selector switch to 115V.
- 7. Disconnect the secondary connectors W11 (rear of the display unit), W13 (A18 J1), and W16 (A18 J400). Unscrew W22 and W23 from the A14 mother board.
- 8. Set jumper A18 J100 to the test (T) position.
- 9. Connect A18 TP13 (ground) to A18 TP2.
- 10. Connect the variable ac power supply to the power line connector.
- 11. Connect the voltmeter positive lead to the +Vdc side of A18 C406.

- 12. Connect the voltmeter negative lead to the Vdc side of A18 C402.
- 13. Slowly increase the voltage of the variable ac power supply to 129 Vrms while monitoring the voltmeter reading.
- 14. If the voltmeter reading is  $360 \pm 20$  Vdc when the variable ac power supply is 129 Vrms, the bulk supply is all right.
- 15. Disconnect A18 TP2 from A18 TP13. Disconnect the test instruments from the HP 3563A.
  - 16. Connect secondary connectors W11 (rear of the display unit), W13 (A18 J1), W16(A18 J400), W22, and W23.
  - 17. Set A18 J100 to the normal (N) position.
  - 18. Return to the troubleshooting procedure diagrams.

# **Control Loop Test**

1. Disconnect the power cord from the rear panel. Remove the bottom cover and the power supply shield of the HP 3563A.

# Warning



Even with power removed energies capable of personal injury are present in this circuit. With the jumpers in the TEST position, these voltages will discharge to relatively safe levels after approximately sixty seconds.

- 2. Using insulated, needle-nose pliers, set jumpers A18 J401 and A18 J402 to the test (T) position.
- 3. Disconnect the secondary connectors W11 (rear of the display unit), W13 (A18 J1), and W16 (A18 J400). Unscrew W22 and W23 from the A14 mother board.
- 4. Put A18 J100 in the test (T) position.
- 5. Connect the dc power supply negative lead to W23 and the dc power supply positive lead to W22.
- 6. Connect the voltmeter negative terminal to the HP 3563A chassis and the positive terminal to A18 TP7.
- 7. Connect the power cord and press the line switch on.
- 8. Vary the dc power supply and monitor the control voltage at A18 TP7. When the dc supply is greater than 5.2V the control voltage should be  $0.6 \pm 0.05V$ . When the dc supply is less than 5.2V the control voltage should be  $4.5 \pm 0.4V$ .
- 9. If the control voltage does not respond correctly as the dc supply voltage is varied, troubleshoot the current monitor and error voltage subblocks.
- 10. Connect Channel 1 of the oscilloscope to A18 TP5 and Channel 2 to A18 TP6.
- 11. Vary the dc power supply and monitor the switching waveform (Waveform #4). When the dc supply is greater than 5.2V the switching waveform pulse width should be zero. When the dc supply voltage is less than 5.2V the switching waveform pulse width should be maximum  $(45\% \text{ or } 2.4 \,\mu\text{s})$ .
- 12. If the switching waveform does not respond correctly as the dc supply voltage is varied, troubleshoot the pulse width modulator and chopper isolation/driver subblocks.

- 13. Disconnect the power cord. Connect the secondary connectors W11 (rear of the display unit), W13 (A18 J1), W16 (A18 J400), W22 and W23.
- 14. Put jumper A18 J100 in the normal position.
- 15. Return to the troubleshooting procedure diagrams.

#### **Slow Start Test**

1. Disconnect the power cord from the rear panel. Remove the bottom cover and the power supply shield of the HP 3563A.

# Warning



Even with power removed, energies capable of personal injury are present in this circuit. With the jumpers in the TEST position, these voltages will discharge to relatively safe levels after approximately sixty seconds.

- 2. Using insulated, needle-nose pliers, set jumpers A18 J401 and A18 J402 to the test (T) position.
- 3. Using 10:1 scope probes, connect channel 1 to A18 TP5 and channel 2 to A18 TP6. Set the two channel oscilloscope as follows:

| Mode         | A & B        |
|--------------|--------------|
| CH1 V/Div    | 500 mV/Div   |
| CH2 V/Div    | 500 mV/Div   |
| CH1 Coupling | dc           |
| CH2 Coupling | dc           |
| Time/Div     | 2.00 μ s/Div |
| EXT Trigger  | EXT + 1      |
| <u> </u>     | A18 TP1      |

- 4. Refer to Waveform #4 (Power Supply Signal Waveforms section). Monitor the oscilloscope while cycling the power on the HP 3563A.
- 5. The switching waveforms duty cycle should increase from 0% to 45% in 0.1s. The control voltage at A18 TP7 should also go from 0V to  $4.5 \pm 0.4$ V in 0.2s.

# **Secondary Supplies Test**

## Caution



Do not attempt this test if the Over Temperature LED or the Primary Fault Fault LED is lit when the HP 3563A is turned on. Also verify that the Bias Supply is operating correctly. Grounding A18 TP9 defeats the protection monitor which may result in damage to the HP 3563A circuit boards.

1. Disconnect the power cord from the rear panel. Remove the bottom cover and the power supply shield of the HP 3563A.

# Warning



Even with power removed energies capable of personal injury are present in this circuit. These voltages will discharge to relatively safe levels after approximately one minute.

- 2. Jumpers A18 J401 and A18 J402 should be in the normal position.
- 3. Disconnect the secondary connectors W11 (rear of the display unit), W13 (A18 J1), and W16 (A18 J400). Unscrew W22 and W23 from the A14 mother board.
- 4. Put jumper A18 J100 in test (T) position.
- 5. Connect the power cord and press the line switch ON.
- 6. Compare the output voltages to table 8-37. The +5S supply should be  $5.2 \pm 0.1$  Vdc.
- 7. If all the voltages are within specification, perform the following:
  - a. Ground A18 TP12 briefly to reset the HP 3563A.
  - b. If any LEDs are lit, troubleshoot the comparators in the protection monitor subblock.
  - c. If no LEDs are lit, troubleshoot the fault as indicated by the previous LED display.

- 8. If the voltages are not within specification, perform the following:
  - a. Starting with the +5V supply check each secondary regulator (A18 U500 to A18 U508) to by measuring the following points:
    - Voltage at pin 1 should be 2.5V greater than voltage at pin 0.
    - Voltage at pin A should be 1.25V greater than voltage at pin 0.
    - Replace any faulty regulators.
    - If voltages are now in specification, go to step 9.
  - b. Check the + 5V secondary Waveform #9 and the secondary supplies Waveform #10.
  - c. If waveforms are all right, troubleshoot the secondary supplies back to the primary transformer. If problem is not found, go to the "Control Loop Test" procedure.
  - d. If the waveforms are incorrect, troubleshoot back to the chopper switches starting with the secondary diodes A18 CR300, A18 CR301, A18 CR512 to A18 CR514, A18 CR600 to CR603.
- 9. Disconnect the power cord. Connect the secondary connectors W11 (rear of the display unit), W13 (A18 J1), W16 (A18 J400), W22 and W23.
- 10. Put jumper A18 J100 in the normal position.
- 11. Return to troubleshooting procedure diagrams.

## **Over Temperature Circuit Test**

1. Disconnect the power cord from the rear panel. Remove the bottom cover and the power supply shield of the HP 3563A.

# Warning



Even with power removed, energies capable of personal injury are present in this circuit. These voltages will discharge to relatively safe levels after approximately one minute.

- 2. Jumpers A18 J401 and A18 J402 should be in the normal position.
- 3. Allow 20 minutes for all components to cool off.
- 4. Disconnect secondary connectors W11 (rear of the display unit), W13 (A18 J1), W16 (A18 J400). Unscrew W22 and W23 from the A14 mother board.
- 5. Put A18 J100 in the test (T) position.
- 6. Connect power cord and press the line switch on.
- 7. If the OTEMP LED is not lit, the over temperature circuit is operating correctly. First check that the fan is operating. If the fan is operating, check each subblock of the power supply starting with the bias supply (see "Bias Supply Test") until the fault is found.
- 8. If the OTEMP LED is lit, the over temperature circuit is faulty. Perform the following steps:
  - a. Check the voltage of U104 pin 14. It should be +5 0.3 Vdc.
  - b. If the voltage is correct, ground A18 TP12 briefly to reset the HP 3563A. If the LED is on, replace U100.
  - c. Check the inputs of U104. At 25° centigrade pin 8 of U104 should equal  $3 \pm 0.2$  Vdc and pin 9 of U104 should equal  $3.5 \pm 0.2$  Vdc.
  - d. Replace faulty part.

9. Disconnect the power cord.

# Warning



Even with power removed, energies capable of personal injury are present in this circuit. These voltages will discharge to relatively safe levels after approximately one minute.

- 10. Connect the secondary connectors W11 (rear of the display unit), W13 (A18 J1), W16 (A18 J400), W22 and W23.
- 11. Put jumper A18 J100 in the normal position.
- 12. Return to troubleshooting procedure diagrams.

# **Power Supply Signal Waveforms**

The oscilloscope plots are used for troubleshooting the A18 Power Supply. Note that all the measurements are taken with a 10:1 probe. Other notes unique to a measurement are written next to the waveform.

# Warning



Service procedures described in this section are performed with the protective covers removed and power applied. Energy available at many points can, if contacted, result in personal injury. Servicing must be performed only by trained service personnel who are aware of the hazards involved (such as fire and electrical shock.

Table 8-38. Power Supply Signal Waveforms

Remove power

Jumpers in test position: A18 J401 A18 J402 Connect ground to A18 TP13 Probe type 10:1 Power ON

| Se                                                                                                                             | etup                                                                | Parameters                                                                           | Waveforms                                                                                          |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|--|--|--|
| Connect CH1 to A Connect CH2 to A Oscilloscope: Mode  CH1 V/Div CH2 V/Div CH1 Coupling CH2 Coupling                            | A18 U2 pin 6  A & B  200 mV/Div 50 mV/Div dc dc                     | Pulse shape<br>Amplitude<br>Time<br>Relationship                                     | OVdc  OVdc  MT=CH1  MIN= 2.00mS/D1v  CH2 CPLG=DC  CH2 SB.0mV/D1v  CH2= 58.0mV/D1v  CH2= 58.0mV/D1v |  |  |  |  |
| Time/Div<br>Trigger                                                                                                            | 2 ms/Div<br>CH1                                                     | •                                                                                    | #1                                                                                                 |  |  |  |  |
| Driver and PWM  Connect CH1 to // Connect CH2 to // Oscilloscope: Mode  CH1 V/Div CH2 V/Div CH1 Coupling CH2 Coupling Time/Div | A18 TP5<br>A18 TP1<br>A & B<br>500 mV/Div<br>100 mV/Div<br>dc<br>dc | Pulse shape Duty cycle Time Relationship The triangle wave must start at 0±0.200 Vdc | OVdc  OVdc  MT-CH1  MAIN- 2.00uS/D1v                                                               |  |  |  |  |
| Time/Div<br>Trigger                                                                                                            | 2 μs/Div<br>CH1                                                     |                                                                                      | #2                                                                                                 |  |  |  |  |

# **Power Supply Signal Waveforms continued**

Remove power

Jumpers in test position: A18 J401 A18 J402 Connect ground to A18 TP13 Probe type 10:1 Power ON

| Se                                                                                                                                        | tup        | Parameters                                                               | Waveform                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SYNC  Connect CH1 to A  Oscilloscope: Mode  CH1 V/Div CH1 Coupling  Time/Div Trigger                                                      |            | Pulse shape<br>Duty cycle                                                | OVdc  MT-CH1  MAIN- 2.00uS/D1v  #3                                                                                                                                                                     |
| Test Switching V Connect CH1 to A Connect CH2 to A Oscilloscope: Mode  CH1 V/Div CH2 V/Div CH2 COupling CH2 Coupling Time/Div Trigger     | \18 TP5    | Pulse shape<br>Time<br>Relationship                                      | OVdc  OVdc  MT-CH1  MAIN- 2.00uS/D1v  CH2 CPLG-DC  CH2 F00.mV/D1v  CH2 F00.mV/D1v  CH2 F00.mV/D1v  H7-CH1  MAIN- 2.00uS/D1v  #44                                                                       |
| Connect CH1 to the A18 Q401 Connect CH2 to the A18 Q400 Oscilloscope: Mode CH1 V/Div CH2 V/Div CH1 Coupling CH2 Coupling Time/Div Trigger | he gate of | Pulse shape<br>Time<br>Relationship<br>Note:<br>Signals will<br>be noisy | OVdc  OVdc  MT-CH1  MRIN- 2.00uS/D1v  CH2 CPLG-DC  CH2- 1.00 V/D1v  HT-CH1  MRIN- 2.00uS/D1v  #5 |

# **Power Supply Signal Waveforms continued**

Remove power

Jumpers in test position. All jumpers in normal position Connect ground to A18 R800 Probe type 10:1 Power ON

| Setup                                                                                                                                                                                                                                                                                                                                                                                                      |                            | Parameters                                             | Waveform                                                                                                                                   |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Transformer T2 (Primary Current)  Connect CH1 to A18 TP8  Oscilloscope:  Mode A CH1 V/Div 20 mV/Div  CH1 Coupling dc Time/Div 2 μs/Div Trigger EXT 1,A18TP1  Normal Switching Waveforms  Connect CH1 to A18 TP5 Connect CH2 to A18 TP6  Oscilloscope:  Mode A & B  CH1 V/Div 500 mV/Div CH2 V/Div 500 mV/Div CH1 Coupling dc CH2 Coupling dc CH2 Coupling dc CH2 Coupling dc Time/Div 2 μs/Div Trigger CH1 |                            | Pulse shape<br>Duty cycle                              | OVdc  CH1 CPLG=DC CH1= 20.0mV/D1v  MT-EXT MRIN- 2.00uS/D1v  #6  CH1 CPLG-DC CH2 CPLG-DC CH2= 500.mV/D1v  OVdc  NT=CH1 MRIN- 2.00uS/D1v  #7 |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                            |                            | Pulse shape<br>Only one<br>signal on at<br>a time (0V) |                                                                                                                                            |  |  |  |
| FA - FB (T1, primary voltage) Connect CH1 to FA Connect CH2 to FI (across primary train) Oscilloscope: Mode CH1 V/Div CH2 V/Div CH1 Coupling CH2 Coupling Time/Div Trigger                                                                                                                                                                                                                                 | A of A18 T1<br>B of A18 T1 | Pulse shape<br>Duty cycle                              | OVdc  MT-EXT MAIN- 2.00us/Div  #8                                                                                                          |  |  |  |

# **Power Supply Signal Waveforms continued**

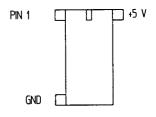
Remove Power

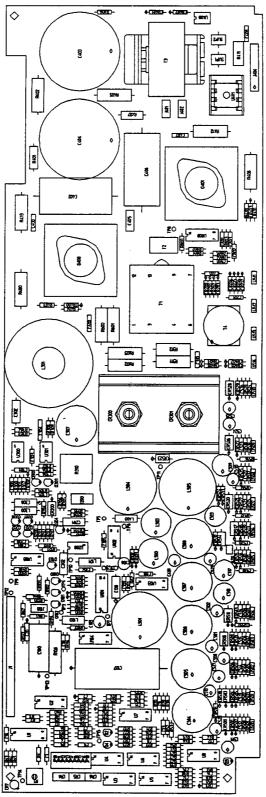
Jumpers in test position: All jumpers in normal position Connect ground to A18 TP13 Probe: 10:1 Power On

| Setu                                                   | p                              | Parameters  | Waveform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|--------------------------------------------------------|--------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| + 5V Secondary<br>Connect CH1 to A18 CR300             |                                | Pulse shape | CH1 CPLG=DC CH2 CPLG=DC CH1= 1.00 V/D:v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Connect CH2 to A1                                      | Anode<br>8 CR300<br>Cathode    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Oscilloscope:<br>Mode                                  | A & B                          |             | 0Vdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| CH1 V/Div<br>CH2 V/Div<br>CH1 Coupling<br>CH2 Coupling | 1 V/Div<br>1 V/Div<br>dc<br>dc |             | 0Vdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| Time/Div<br>Trigger                                    | 1 μs/Div<br>CH1                |             | MT-CHI<br>MAIN- 1.00uS/Div<br>#9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Secondary Suppli                                       | es                             | Pulse shape |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Connect CH1 to A1                                      | Anode                          |             | CH1 CPLG=DC CH2 CPLG=DC CH1= 5.00 V/Div CH2= 5.00 V/Div                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Connect CH2 to A1                                      | 8 CR601<br>Cathode             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Oscilloscope:<br>Mode                                  | A & B                          |             | 0Vdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| CH1 V/Div<br>CH2 V/Div<br>CH1 Coupling<br>CH2 Coupling | 5 V/Div<br>5 V/Div<br>dc<br>dc |             | OVdc Manual Manu |  |  |  |  |  |
| Time/Div<br>Trigger                                    | 1 μs/Div<br>CH1                |             | MT=CHI<br>MRIN= 1.00uS/D1V<br>#10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |

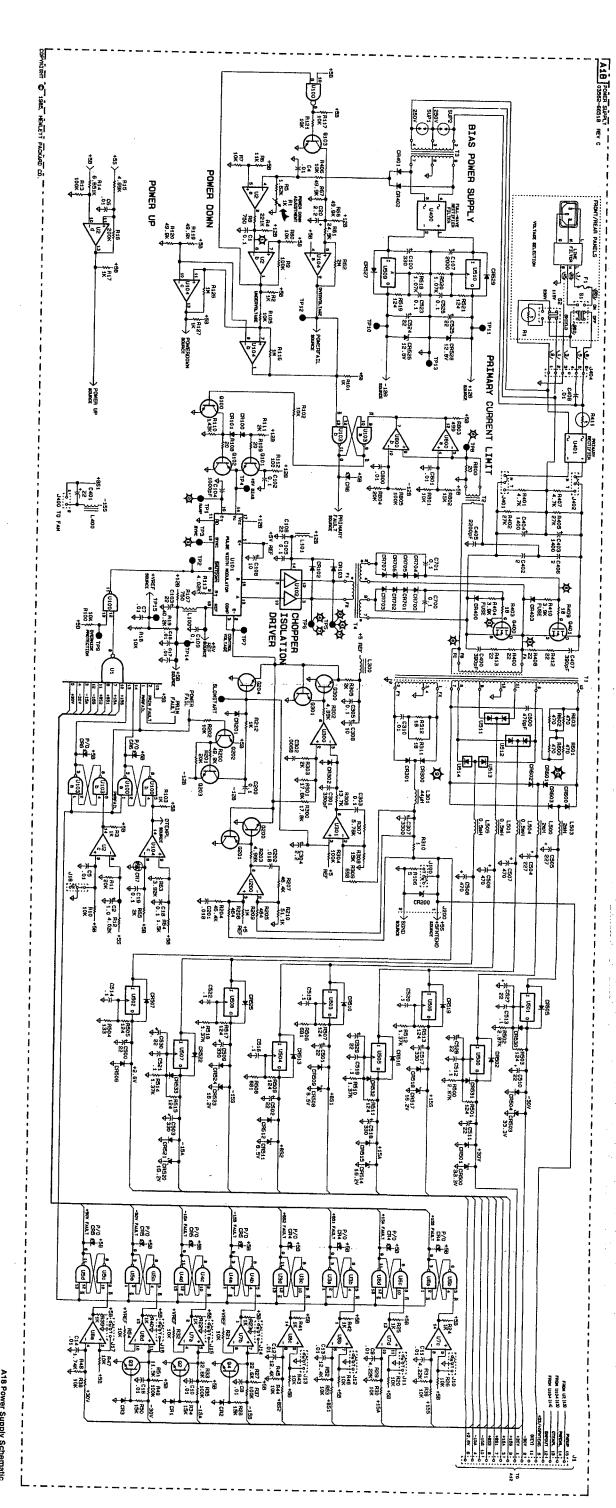
# **Power Supply After-Repair Adjustments and Tests**

Table 8-39. After-Repair Adjustments and Tests


| Perform the following:*                                                                                                | Section     |
|------------------------------------------------------------------------------------------------------------------------|-------------|
| Diagnostic Tests:<br>TESTALL                                                                                           | VII         |
| Adjustments:  Do the power-down adjustment only if a component was changed in the power-down or bias supply subblocks. | III         |
| Operational Verification: None                                                                                         |             |
| Performance Tests: None                                                                                                | <del></del> |


<sup>\*</sup>Return all jumpers to the normal (N) position

#### REFERENCE TABLE


| IC   | GND          | +5VB     | CAPS | -12B     | +12B    |
|------|--------------|----------|------|----------|---------|
| UI   | 8            | 15,16    | ]    | <u> </u> |         |
| U2   | 12           | I        |      |          | 3       |
| U7   | 12           | [        |      |          | 3       |
| U8   | 12           |          |      |          | 3       |
| U100 | 7            | и        | C101 | .]       |         |
| U101 | 6,7<br>15,11 |          |      |          | 17      |
| U102 | 7            |          |      |          |         |
| U103 | 7            | 14       | C110 | .        |         |
| U104 | 12           | 1        |      |          |         |
| U200 | 1            | <u>.</u> |      | 4        | 7       |
| U300 | .]           |          |      | 4(C300)  | 7(C306) |
| U301 |              |          |      | 4        | 7       |
| U800 | 3,8          | 11       | C803 | 6(0802)  |         |

ALL INTEGRATED CIRCUITS ARE CORNER POWERED EXCEPT THOSE SHOWN IN THE REFERENCE TABLE.CORNER POWERED ICS HAVE GROUND CONNECTED TO THE LOWER LEFT PIN, AND +5 V CONNECTED TO THE UPPER RIGHT PIN.REGARDLESS OF THE TOTAL PIN COUNT (e.g.,FOR A 16 PIN DIP, GROUND IS CONNECTED TO PIN 8 AND +5 V IS CONNECTED TO PIN 16).





A18 Power Supply Component Locator P/N 03562-66518 Rev C Page 2 of 3



A18 Power Supply Schematic P/N 03562-66518 Page 3 of 3 135



The information in this section should be used to isolate faulty subblocks on the analog source board. All procedures assume that you have used the fault isolation procedures in Section VII to determine that this board has failed and that you have read and understand the circuit descriptions in Section VI.

### Warning



Service procedures described in this section are performed with protective covers removed and power applied. Hazardous voltages in these circuits can cause personal injury if you make an electrical connection between you and them. Servicing must be performed only by trained service personnel who are aware of the hazards involved (such as fire and electrical shock).

#### Caution



Do not insert or remove any circuit board in the HP 3563A while power is on. Power transients caused by insertion or removal may cause damage to circuits on the board being changed or on other boards. Many of the parts are static sensitive. Use the appropriate precautions when removing, handling, and installing all parts to avoid unneccessary damage.

#### **How to Use This Section**

Start The main circuits on this board are the sine wave circuitry (across the top of the

schematic), the offset circuits (includes the front end interface), the calibrator (and its

two signal sources), and the overload detection circuit. Choose the circuit to

troubleshoot by the symptoms of the problem.

Reference The component locator and schematic follow the "After-Repair Adjustments and Tests"

table. Refer to figure 4-1 in Section IV for the location of cables and boards. Use the

waveforms in table 8-42 as a reference for proper operation.

After-Repair Use table 8-43 to determine which adjustments and tests need to be done to complete

instrument service.

## **Troubleshooting Hints**

- 1. There are three D/A converters on this board; two are used for conversion of digital data to analog signals and the third is used as an attenuator. The serial digital data must be clocked into the shift register and latched. If the problem seems to be in the digital circuits where it is difficult to analyze whether proper information is being received, check the signals used to clock and latch the data.
- 2. Some of the signals supplied by the calibrator circuits may be turned on with special beeper commands so that they stay on long enough to be analyzed thoroughly.
- 3. The only symptom of a defective overload circuit may be a burned out final amplifier. The overload protection could fail to protect the output amplifier or fail and always protect it. Since the first case is a failure that could remain hidden, it is recommended that the overload protection circuit be tested any time the final amplifier is found to be defective. The latter case would keep the source from putting out any signal which would be an obvious problem.

# **Sine Wave Circuitry Test**

1. Use the following key strokes to turn on the source:

| Control PRESET     | •••     | RESET          |                   |                   |
|--------------------|---------|----------------|-------------------|-------------------|
| Measurement SOURCE |         | SOURCE<br>TYPE | <br>FIXED<br>SINE | <br><b>32</b> kHz |
|                    | • • • • | SOURCE         | <br>5 V           |                   |

The signal at TP11 should now appear as shown in the first waveform of table 8-42. This particular frequency is selected because it is a factor of the 256 kHz clock signal for the DAC, which allows the scope to synchronize. 64 kHz, 16 kHz, or 8 kHz would work as well.

- 2. Examine the waveforms along the signal path at test points TP5, TP15, and TP13 and compare them to waveforms in table 8-42. The signal amplitude at test points TP15 and TP13 (after the attenuator) should change with changes in the source level. Signal amplitudes at test points TP11 and TP5 (before the attenuator) do **not** change when the source level is changed.
- 3. The status of the attenuator control lines vary for different source level selections. Table 8-40 shows the status of each line for any given source level selection to aid in the isolation of attenuation problems between the shift registers (U500, U501, and U502) and the multiplying DAC (U251). Codes not in the table may be derived by dividing the desired voltage (source level) by 5 mV and converting the result from a decimal number to a binary number.

Table 8-40. Attenuator Data Input versus Source Output Level

| Source Levels |    | TTL Levels (high or low) |    |    |    |    |    |    | Decimal |    |      |
|---------------|----|--------------------------|----|----|----|----|----|----|---------|----|------|
| 0 mV          | 0  | 0                        | 0  | 0  | 0  | 0  | 0  | 0  | 0       | 0  | 0    |
| 10 mV         | 0  | 0                        | 0  | 0  | 0  | 0  | 0  | 0  | 1       | 0  | 2    |
| 1 V           | 0  | 0                        | 1  | 1  | 0  | 0  | 1  | 0  | 0       | 0  | 200  |
| 2 V           | 0  | 1                        | 1  | 0  | 0  | 1  | 0  | 0  | 0       | 0  | 400  |
| 3 V           | 1  | 0                        | 0  | 1  | 0  | 1  | 1  | 0  | 0       | 0  | 600  |
| 4 V           | 1  | 1                        | 0  | 0  | 1  | 0  | 0  | 0  | 0       | 0  | 800  |
| 5V            | 1  | 1                        | 1  | 1  | 1  | 0  | 1  | 0  | 0       | 0  | 1000 |
| 5.1 V         | 1  | 1                        | 1  | 1  | 1  | 1  | 1  | 1  | 0       | 0  | 1020 |
| U251 pin #    | 4  | 5                        | 6  | 7  | 8  | 9  | 10 | 11 | 12      | 13 | -    |
| data bit #    | D9 | D8                       | D7 | D6 | D5 | D4 | D3 | D2 | D1      | D0 | _    |

#### **DC Offset Test**

- 1. To test the operation of the dc offset, select a dc offset on the front panel and measure the result at TP10. The reading should be of opposite polarity and half the selected value; e.g. if you select +1 V the reading should -0.50 V  $\pm 0.01$  V.
- 2. If the readings are not as predicted, the failure is in the D/A converter (DAC) circuit or the digital circuitry previous to the DAC. Check the following digital signals for activity:
  - LDSRCL (load source, active low) latches data into U500 & U502. This signal appears only when changes are made via the front panel (such as changing dc offset or source level). A logic probe may be used to detect activity on this line.
  - CNTCLK (control clock) clocks serial data into the serial-to-parallel shift registers. Check this signal at the input of both U501 (pin 8) and U502 (pin 2). Data appears on this line only when changes are made from the front panel that cause a change in the status of these circuits, such as changing the dc offset or source level.
  - CNTLD (control data) is the serial data that is loaded into U500 and U502. Data appears on this line only when changes are made from the front panel that cause a change in the status of these circuits, such as changing the dc offset or source level.

Note



The source must be turned on by selecting one of the signal types. Selecting a source level of 0 V keeps signals from the sine wave interface circuitry from interfering with testing of the dc offset circuitry.

3. Move the voltmeter probe to TP13. The readings on this test point should coincide with the front panel dc offset selections within 10 mVrms when 0 V is selected and within 50 mV when 10 V is selected.

#### **Calibration Circuits Test**

These circuits include schematic blocks for the square wave and pseudo random noise sources, signal selection, and the calibrator. In normal operation these circuits are used only during calibration and are not controllable by the operator. These circuits may be controlled through the use of beeper commands as described in the following discussion.

# Note

It does not matter whether the beeper is being turned on or off; pressing the key is all that is required to activate the command sequence. The beeper commands toggle the feature on and off; using it twice turns it on and then off.

If the measurement stops and the "WAITING FOR TRIGGER" message appears in the lower right hand part of the display, the measurement may be restarted by issuing the beeper command twice (calibration may interrupt without warning; auto cal may be turned off to prevent this).

If beeper commands have been activated the instrument must be reset before it can make measurements. This is required because the beeper commands configure internal circuits for special tests which do not allow accurate measurements to be made.

#### 4 kHz Square Wave Calibration Circuits Test

This sequence of key strokes turns on the 4 kHz square wave in the calibrator, connects it to the analyzer front end, configures the trigger to run on the CALTRIG signal from the analog source board, and configures the display to show magnitude and phase with sideband markers on the significant frequencies.

Press the HP 3563A keys as follows:

| Control PRESET             | RESET            |                 |
|----------------------------|------------------|-----------------|
| 「Input Setup ] SELECT TRIG | MORE<br>TYPES    | <br>EXT<br>TRIG |
| 「Measurement ] WINDOW      | UNIFRM<br>(NONE) |                 |

| Input Setup RANGE     | <br>—13              | <br>dBVrms                            |                                         |
|-----------------------|----------------------|---------------------------------------|-----------------------------------------|
| Control SPCL FCTN     | <br>BEEPER<br>ON/OFF | <br><b>—519</b>                       | <br>ENTER<br>(turns on 4 kH<br>z sq wv) |
| Display A&B MEAS DISP | <br>FILTRD<br>INPUT  | <br>LINEAR<br>SPEC 1                  |                                         |
| Markers   SPCL MARKER | <br>SBAND<br>ON      | <br>CRRIER<br>FREQ<br>SBAND<br>INCRMT | <br><b>52</b> kHz<br><b>8</b> kHz       |
| Display B             | <br>PHASE            |                                       |                                         |
| 「Display              |                      |                                       |                                         |

The display of the HP 3563A should appear as shown in table 8-42, Waveform #3. The sideband markers (birds) in the phase trace should be stationary. Unstable phase components at these frequencies indicate a triggering problem. Waveform #4 shows the relationship between the output signal at TP8 and CALTRIG at pin 9 of U451.

# 64 kHz Square Wave Calibration Circuits Test

This sequence of key strokes turns on the 64 kHz square wave in the calibrator, connects it to the analyzer front end, configures the trigger to run on the CALTRIG signal of the analog source board, and configures the display to show magnitude and phase.

Press the HP 3563A keys as follows

| 10   | PRESET                          | •••••         | RESET            |                |                  |                             |
|------|---------------------------------|---------------|------------------|----------------|------------------|-----------------------------|
| 「 Ir | nput Setup  <br>SELECT<br>TRIG  |               | MORE<br>TYPES    |                | EXT<br>TRIG      |                             |
| ΓΜ   | leasurement ]<br>WINDOW         | •••••         | UNIFRM<br>(NONE) |                |                  |                             |
| [ In | put Setup ] RANGE               |               | —13              |                | dBVrms           |                             |
| ſς   | ontrol ] SPCL FCTN              |               | BEEPER<br>ON/OFF | •••••          | —522             | <br>ENTER<br>(64 kHz sq wv) |
| ſΦ   | isplay ]<br>A&B<br>MEAS<br>DISP | •••••         | FILTRD<br>INPUT  |                | LINEAR<br>SPEC 1 |                             |
| D    | isplay ]<br>B<br>COORD          |               | PHASE            |                |                  |                             |
| [ Di | splay ]<br><b>A&amp;B</b>       |               |                  |                |                  |                             |
|      | X (turns on m                   | narker at pea | k magnitude; h   | ere it's at 64 | kHz)             |                             |

The display of the HP 3563A should appear as shown in table 8-42 A30, Waveform #5. The marker on the phase trace should be stationary. Unstable phase at this frequency indicates a triggering problem. Waveform #6 shows the relationship between the output signal at TP8 and CALTRIG at pin 9 of U451.

#### Pseudo Random Noise (PRN) Source Calibration Circuits Test

This sequence of key strokes turns on the PRN source in the calibrator, connects it to the analyzer front end, configures the trigger to run on the CALTRIG signal of the analog source board, and configures the display to show magnitude and phase with sideband markers on the significant frequencies. Any of the 100 frequencies may be analyzed by changing the carrier frequency; 90 kHz was selected because the upper frequencies are most sensitive to changes in phase.

Press the HP 3563A keys as follows:

| Control PRESET          | ••••  | RESET            |                 |      |                         |
|-------------------------|-------|------------------|-----------------|------|-------------------------|
| Input Setup SELECT TRIG | ••••• | MORE<br>TYPES    | <br>EXT<br>TRIG |      |                         |
| Measurement WINDOW      | ••••• | UNIFRM<br>(NONE) |                 |      |                         |
| [ Input Setup ] RANGE   | ••••• | -13              | <br>dBVrms      |      |                         |
| Control SPCL FCTN       |       | BEEPER<br>ON/OFF | <br><b>—514</b> | •••• | ENTER<br>(turns on PRN) |
| Display A&B             |       |                  |                 |      |                         |
| 「Display ] MEAS DISP    |       | FILTRD<br>INPUT  | <br>LINEAR      |      |                         |

A30 Analog Source [ Markers ] **SPCL** MARKER

**SBAND** 

ON

**CRRIER FREQ** 

90 kHz

**SBAND** 

**INCRMT** 

1 kHz

[ Display ]

**COORD** 

PHASE

[ Display ] A&B

The display of the HP 3563A should appear as shown in table 8-42, Waveform #7. The sideband markers (birds) in the phase trace should be stationary. Unstable phase components at these frequencies indicate a triggering problem. Waveform #8 shows the relationship between the output signal at TP8 and CALTRIG at pin 9 of U451.

# Inverted Pseudo Random Noise (INV PRN) Source Calibration Circuits Test

This sequence of key strokes turns on the INV PRN source in the calibrator, connects it to the analyzer front end, configures the trigger to run on the CALTRIG signal of the analog source board, and configures the display to show magnitude and phase with sideband markers on the significant frequencies.

Press the HP 3563A keys as follows:

| I C | Control  <br>PRESET              |      | RESET            |                             |                                |
|-----|----------------------------------|------|------------------|-----------------------------|--------------------------------|
| Γli | nput Setup ] SELECT TRIG         |      | MORE<br>TYPES    | <br>EXT<br>TRIG             |                                |
| Γħ  | Measurement ] WINDOW             | •••• | UNIFRM<br>(NONE) |                             |                                |
| Γli | nput Setup ] RANGE               |      | —13              | <br>dBVrms                  |                                |
| ſ   | Control 7<br>SPCL<br>FCTN        |      | BEEPER<br>ON/OFF | <br>—515                    | <br>ENTER<br>(turns on INV PRN |
| ſc  | Display 7<br>A&B<br>MEAS<br>DISP |      | FILTRD           | INPUT                       | <br>LINEAR<br>SPEC 1           |
| ΓN  | Aarkers ]<br>SPCL<br>MARKER      |      | SBAND<br>ON      | <br>CRRIER<br>FREQ<br>SBAND | <br>90 kHz                     |

Service A30 Analog Source

[ Display ]

COORD ..... PHASE

Display A&B

The display of the HP 3563A should appear as shown in table 8-42, Waveform #9. The sideband markers (birds) in the phase trace should be stationary. Unstable phase components at these frequencies indicate a triggering problem. Waveform #10 shows the relationship between the output signal at TP8 and CALTRIG at pin 9 of U451.

If these special commands do not result in the proper signal appearing at TP8, check for proper operation of the signal selection circuits and the sources of the signals using table 8-41.

Note



The calibrator trigger signal for pseudo random noise is the same for either PRN or inverted PRN.

Table 8-41. Control Line Status versus Selected Signal

| Control Line     | Selected Signal |       |         |     |  |  |
|------------------|-----------------|-------|---------|-----|--|--|
| Control Line     | 64 kHz          | 4 kHz | INV PRN | PRN |  |  |
| INV CAL U452(2)  | L               | L     | Н       | Н   |  |  |
| SEL CAL U452(14) | L               | Н     | L       | Н   |  |  |

#### **Overload Detection Circuit Tests**

This procedure tests all components necessary for overload protection including the comparators, the logic, the relay and the relay driver.

- 1. Connect a variable dc source to the source output connector on the front panel. Set the dc source output level to 0 V.
- 2. Monitor the voltage on the output side of A30 R404 with a voltmeter.
- 3. Increase the dc level and monitor the voltmeter reading. The reading should increase until it reaches  $13 \text{ V} \pm 1 \text{ V}$  and then fall to less than 1 V.
- 4. The error message "Source Fault" should appear in the lower right corner of the display.
- 5. To erase the error message, press the following keys:

| [ Control ] |           |
|-------------|-----------|
| PRESET      | <br>RESET |

6. Reverse the polarity of the signal connected to the front panel source connector and repeat steps 2 through 4.

# **Waveform and Spectrum Plots**

The following illustrations are display plots of measurements taken with the HP 3563A spectrum analyzer (used to look at signals within itself) and an oscilloscope. These waveforms are provided to aid in troubleshooting the analog source board, A30.

Table 8-42. Analog Source Signal Waveforms

Remove power Jumpers in normal (N) position Probe type 1:1 Power on

| Power on                                                                                                                                                                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| The key presses required to activate the signals shown are listed in the service procedures.                                                                                              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Setup                                                                                                                                                                                     | Parameters                 | Display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| 32 kHz sine signal at TP11 and TP5  Configure the instrument as described in the "Sine Wave Circuitry Test," step I.  CH1 scale 2.0 V/div CH2 scale 2.0 V/div Sweep at 10 \( \mu \) s/div | Waveshape<br>and amplitude | #1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| 32 kHz sine signal at TP15 and TP13  Configure the instrument as described in the "Sine Wave Circuitry Test," step I.  CH1 scale 2.0 V/div CH2 scale 4.0 V/div Sweep at 10 μs/div         | Waveshape<br>and amplitude | #2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| Calibrator 4 kHz square wave spectrum  Configure the instrument as described in the "4 kHz Square Wave Calibration Circuits Test."                                                        | Marker position            | Fil.T LIN S1 OND VID UNIF OND V |  |  |  |  |  |

# **Analog Source Signal Waveforms continued**

Remove power
Jumpers in normal (N) position
Probe type 1:1
Power on
The key presses required to activate the signals shown are listed in the service procedures

| The key presses required to activate the s                                                                                                                                                                                | signals shown are listed   | d in the service procedures.          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------|
| Setup                                                                                                                                                                                                                     | Parameters                 | Display                               |
| Calibrator 4 kHz square wave at TP8 and 4 kHz CALTRIG signal  Configure the instrument as described in the "4 kHz Square Wave Calibration Circuits Test."  CH1 scale 200 mV/div CH2 scale 4.0 V/div Sweep at 200 µs/div   | Waveshape<br>and amplitude | #4                                    |
| Calibrator 64 kHz square wave spectrum  Configure the instrument as described in the "64 kHz Square Wave Calibration Circuits Test."                                                                                      | Marker position            | X=64kHz Ya=-15.499 dBvrms FILT_LIN S1 |
| Calibrator 64 kHz square wave at TP8 and 64 kHz CALTRIG signal  Configure the instrument as described in the "64 kHz Square Wave Calibration Circuits Test."  CH1 scale 200 mV/div CH2 scale 4.0 V/div Sweep at 10 µs/div | Waveshape<br>and amplitude | #6                                    |

# **Analog Source Signal Waveforms continued**

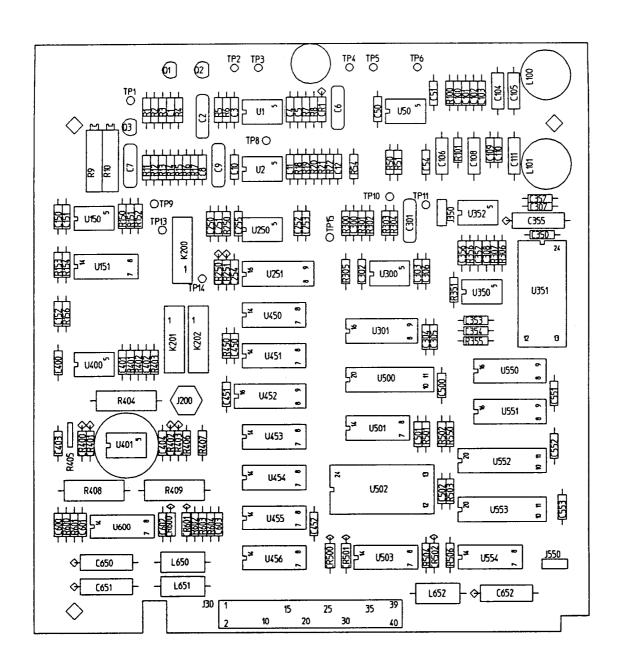
Remove power Jumpers in normal (N) position Probe type 1:1 Power on

|                                                                                                                                                                                                                                       |                                                            | The key presses required to activate the signals shown are listed in the service procedures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Setup Parameters Display                                                                                                                                                                                                              |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| Calibrator PRN  Configure the instrument as described in the "PRN Source Calibration Circuits Test."                                                                                                                                  | Magnitudes of spectra Phase markers should not move around | FILT LIN S1 OXOVID Unit  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0  -90.0 |  |  |  |  |  |  |
| Calibrator PRN at TP8 and PRN CALTRIG signal Configure the instrument as described in "PRN Source Calibration Circuits Test."  CH1 scale 200 mV/div CH2 scale 4.0 V/div Sweep at 50 \( \mu \) s/div (signal averaged to reduce noise) | Waveshape<br>and amplitude                                 | #8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| Calibrator inverted PRN spectrum  Configure the Instrument as described in the "INV PRN Source Calibration Circuits Test."                                                                                                            | Magnitudes of spectra Phase markers should not move around | FILT LIN S1 ONOVID UNIT OV1  dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |

# **Analog Source Signal Waveforms continued**

|                            | Analog Source Signal Wavelorins Continued |  |  |  |  |  |  |
|----------------------------|-------------------------------------------|--|--|--|--|--|--|
|                            |                                           |  |  |  |  |  |  |
| gnals shown are listed i   | in the service procedures.                |  |  |  |  |  |  |
| Parameters                 | Display                                   |  |  |  |  |  |  |
| Waveshape<br>and amplitude | #10                                       |  |  |  |  |  |  |
|                            | Parameters Waveshape                      |  |  |  |  |  |  |

# **Analog Source After-Repair Adjustments and Tests**


Table 8-43. After-Repair Adjustments and Tests

| Perform the following:*                                                                            | Section                                                |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Diagnostic Tests:<br>SOURCE FUNCTN<br>TEST ALL                                                     | VII                                                    |
| Adjustments:<br>Source dc Offset<br>Calibrator Gain                                                | III                                                    |
| Performance Tests: Source Residual Offset Source Amplitude Accuracy and Flatness Source Distortion | ll<br>(Chapter 4, <i>HP 3563A Installation Guide</i> ) |
| Operational Verification: Source Amplitude Accuracy and Flatness Single Channel Phase Accuracy     | ll<br>(Chapter 3, <i>HP 3563A Installation Guide</i>   |

<sup>\*</sup>Return all jumpers to the normal (N) position.

#### REFERENCE TABLE

| C            | 640                          | +5¥      | γ.            | γ-       | +150      | -15V     |
|--------------|------------------------------|----------|---------------|----------|-----------|----------|
| U350         | T                            |          |               | I        | 7003521   | 4        |
| U351         | 5.12                         | ]        |               | ]        | 7(0308)   | 3103500  |
| U352         |                              |          |               |          | 1,21(356) | 6.7(357) |
| UKSI         | 7                            | 14004501 |               |          |           |          |
| U452         | 15,8                         | 16       |               | ]        |           |          |
| U(55         |                              | WC452)   |               | ]        |           | [        |
| U500         | 10                           | 20105000 |               |          | l         |          |
| U501         | 1 7                          | 14025011 | .[            | 1        | 1         | [        |
| U502         | 12.13                        | 24(502)  |               | ]        | ]         |          |
| U550         | 8                            | 16(0550) |               |          | ]         |          |
| <b>U55</b> 1 |                              | 1605511  |               | ]        |           | [        |
| U552         | 10.19                        | 20005530 |               | ]        |           |          |
| U553         | 10.99<br>2.3<br>10.99<br>2.3 | 20005520 | Ţ · · · · · · |          |           | [        |
| UI           | T                            | 1        | 703           | (CO      | ]         | [        |
| UZ .         |                              | 1        | 70.00         | 45(19    |           | [        |
| U150         | 7                            | 1        | 7K (50)       | 40.50    |           | [        |
| UB1          | 7                            | 1        | 14            | 8        |           |          |
| U250         |                              |          | 70252         | 4102530  | 1         |          |
| U300         |                              | 1        | 74C3021       | 4C3030   |           | [        |
| U301         |                              | .]       | B(C304)       | 3(305)   | ]         |          |
| U400         | [[                           | ]        | 70(400)       | 41(100   | I         | [        |
| U401         |                              |          | 10(403)       | 7(C404)  |           |          |
| U504         |                              |          | 74CSD1        | 451      | ]         | [        |
| U600         |                              | .1       | 1E(609        | 615,6020 | ]······   | <u>ر</u> |



A30 ANALOG SOURCE REV FRONT END 2:2% S/b 1020 R307 8 49.9 8 49.9 DAC 1 ₩ 6306 4.300 1.200 DC OFFSET DAC ₹R305 9303 1.8 × F304 4.64k ₹ 8302 100 PSEUDO RANDOM NOISE SOURCE SQUARE WAVE 9152 100 ATTENUATOR SIGNAL SELECTION \$ 1.0 ★ 0.1 ★ 8.0 ★ 8.0 R3
200
CALIBRATOR
0.1 POWER SUPPLY
DECOUPLING
R22 AGS AGS AGS AGS 1150 (CE20) 1150 ( . 8407 ₹

## A31 Trigger

The information in this section should be used to isolate faulty subblocks in the A31 Trigger assembly. All procedures assume the Fault Isolation procedures of Section VII have been used to determine which board has failed, and the circuit descriptions of Section VI are understood.

#### Warning



Service procedures described in this section are performed with the protective covers removed and power applied. Hazardous voltage and energy available at many points can, if contacted result in personal injury. Servicing must be performed only by trained service personnel who are aware of the hazards involved (such as fire and electrical shock).

#### Caution



Do not insert or remove any circuit board in the HP 3563A with the line power turned on. Power transients caused by insertion or removal may damage the circuit boards. Many of the parts are static sensitive. Use the appropriate precautions when removing, handling, and installing all parts to avoid unneccessary damage.

#### How to Use This Section

Start

Start troubleshooting by using figure 8-13. This procedure diagram describes the best order to perform the troubleshooting tests based on the symptoms observed.

Reference

The component locator and schematic follow the "After-Repair Adjustments and Tests" table. For the location of cables and boards refer to figure 4-1 in Section IV.

Verify

Use the oscilloscope waveforms in table 8-49 to see correct operation at various test points in the assembly.

After-Repair

Use table 8-50 to determine which adjustments and tests need to be done to complete instrument service.

#### **Troubleshooting Hints**

- 1. In the VCXO subblock the most likely components to fail are Y401, CR402, CR403, Q401, and Q402. C406, C407, and L401 are critical components but are less likely to fail.
- 2. Trigger problems can be caused by the A1 Digital Source, the A6 Digital Filter Controller, the A30 Analog Source, the A31 Trigger, or the A32, A34 ADCs. Use the "Isolating Trigger Failures" procedure in Section VII to determine which assembly is failing.

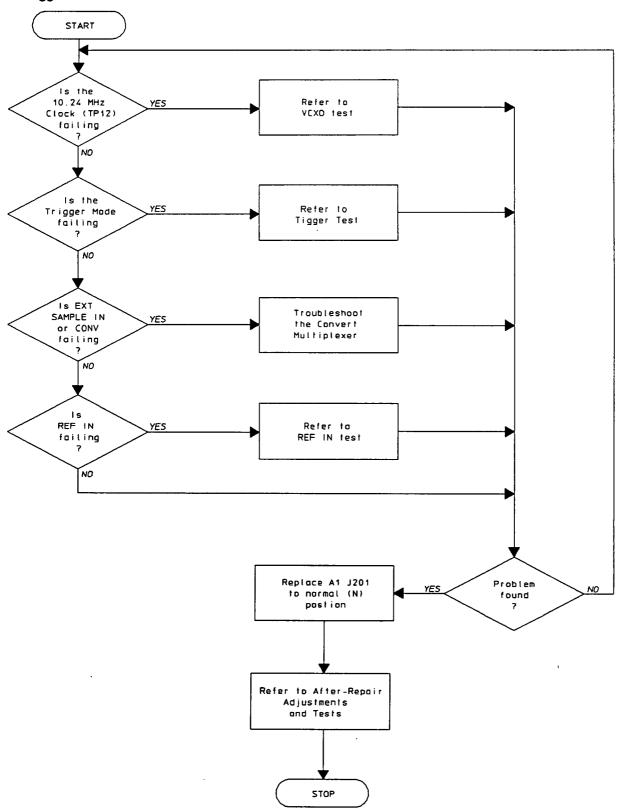



Figure 8-13. A31 Trigger Troubleshooting Procedure Diagram

## **VCXO Test**

- 1. Press the line switch OFF and remove the top cover. Place the A31 Trigger assembly on the extender board.
- 2. Press the line switch ON.
- 3. Use table 8-44 to isolate the failure.

Table 8-44. VCXO Test

| Signal              | Test Location      | Waveform Number or Value |
|---------------------|--------------------|--------------------------|
| 10.24 MHZ           | A31 TP12           | #1                       |
| 20.24 MHZ           | A31 TP10           | #2                       |
| SMP OUT             | A31 TP17<br>(U9-7) | #3                       |
| Control Voltage     | A31 TP11           | ≅ - 4 to -6 Vdc          |
| dc Adjustment Range | A31 R410           | 0 to + 10 Vdc            |
|                     | A31 R403           | +5.5 ± 0.6 Vdc           |
| _                   | A31 R408           | +5.3 ± 0.8 Vdc           |
| _                   | A31 U201-1         | ≅ -1 to -1 5 Vdc         |

## **Trigger Test**

- 1. Press the line switch OFF and remove the top cover. Place the A31 Trigger assembly on the extender board.
- 2. Press the line switch ON.
- 3. Perform steps 4 through 9 and use table 8-45, table 8-46, and table 8-47 to isolate the failure.
- 4. Connect a 5 Vpp, 1 kHz sine wave to the front panel EXT TRIGGER input.
- 5. To use table table 8-45 press the keys as follows:

|                           | <br>MORE<br>TYPES | ••••• | EXT<br>TRIG |
|---------------------------|-------------------|-------|-------------|
|                           | <br>SLOPE<br>±-   |       |             |
| Input Setup ] SELECT TRIG | <br>TRIG<br>LEVEL |       | 1 V         |
| PRESET                    | <br>RESET         |       |             |

Note

TTL low is represented by a "0". TTL level high is represented by a "1".

Table 8-45. Trigger Test # 1

| Signal         | Test Location      | Waveform Number<br>or Value |
|----------------|--------------------|-----------------------------|
| Trigger Input  | A31 TP1,A31<br>TP3 | #5                          |
| DAC            | A31 TP2            | + 0.14 ± 0.02 Vdc           |
| Shift Register | A31 U4 pin 13      | 0                           |
|                | 14                 | 0                           |
| ,              | 15                 | 0                           |
|                | 16                 | 1                           |
|                | 17                 | 0                           |
|                | 18                 | 0                           |
|                | 19                 | 0                           |
|                | 20                 | 1                           |
|                | 21                 | 0                           |
|                | 22                 | 1                           |
|                | 23                 | 1                           |
| Decoder        | A31 U3 pin 4       | 0                           |
|                | 5                  | 1                           |
|                | _6                 | 1                           |
|                | 7                  | 1                           |

- 6. Connect a 5 Vpp, 1 kHz sine wave to the front panel Channel 1 input.
- 7. To use table 8-46, press the HP 3563A keys as follows:

| Input Setup SELECT | 1     |                     |       |      |            |
|--------------------|-------|---------------------|-------|------|------------|
| TRIG               | ••••• | CHAN 1<br>INPUT     |       |      |            |
|                    | ••••• | SLOPE<br>+ <u>-</u> | ••••• | TRIG | <b>0</b> V |

Table 8-46. Trigger Test # 2

| Signal         | Test Location      | Waveform Number or Value |
|----------------|--------------------|--------------------------|
| Trigger Input  | A31 TP3,A31<br>TP1 | #6                       |
| Shift Register | A31 U4 pin 13      | 0                        |
| -              | 14                 | 0                        |
|                | 15                 | 1                        |
|                | 16                 | 0                        |
|                | 17                 | 1                        |
|                | 18                 | 1                        |
|                | 19                 | 1                        |
|                | 20                 | 1                        |
|                | 21                 | 1                        |
|                | 22                 | 1                        |
|                | 23                 | 0                        |
| Decoder        | A31 U3 pin 4       | 1                        |
|                | 5                  | 0                        |
|                | 6                  | 1                        |
|                | 7                  | 1                        |

- 8. Connect a 5 Vpp, 1 kHz sine wave to the front panel Channel 2 input.
- 9. To use table 8-47, press the HP 3563A keys as follows:



Table 8-47. Trigger Test # 3

| Signal        | Test Location | Waveform Number or Value |
|---------------|---------------|--------------------------|
| Trigger Input | A31 TP3       | A31 TP1                  |
| Decoder       | A31 U3 pin 4  | 1                        |
|               | 5             | 1                        |
|               | 6             | 0                        |
|               | 7             | 1                        |

## **REF IN Test**

- 1. Press the line switch OFF and remove the top cover. Place the A31 Trigger assembly on the extender board.
- 2. Press the line switch ON.
- 3. Connect a 0.1 Vrms, 1 MHz sine wave to the rear panel REF IN input.
- 4. Use table 8-48 to isolate the failure.

Table 8-48. REF IN Test

| Signal                | Test Location         | Waveform Number or Value  |
|-----------------------|-----------------------|---------------------------|
| REF IN / 125          | A31 TP15<br>(U305-11) | #8                        |
| REF IN/ 3             | A31 TP18<br>(U303-8)  | #9                        |
| 3.413 MHz             | A31 TP16<br>(U507-5)  | #10                       |
| 80 kHz Filter         | A31 U101-7            | #11                       |
| Error Voltage         | A31 TP6               | 0 ± 0.04 Vdc              |
| UNLOCK                | A31 TP9               | TTL level low             |
| Control Voltage       | A31 TP11              | $-4.0 \pm 3 \mathrm{Vdc}$ |
| Change REF IN frequer | icy to 1.0002 MHz     |                           |
| Control Voltage       | A31 TP11              | -10 ± 4 Vdc               |
| Frequency Out         | A31 TP10              | 20.484096 MHz             |
| Change REF IN frequer | ncy to 2 MHz          |                           |
| REF IN/ 3             | A31 TP18<br>(U303-8)  | #12                       |
| Change REF IN frequer | ncy to 5 MHz          |                           |
| REF IN / 3            | A31 TP18<br>(U303-8)  | #13                       |
| Change REF IN frequer | icy to 10 MHz         |                           |
| REF IN/ 3             | A31 TP18<br>(U303-8)  | #14                       |

## **Trigger Assembly Waveforms**

The oscilloscope plots are used for troubleshooting the A31 Trigger assembly. Note that all the measurements are taken with a 10:1 probe. Other notes unique to a measurement are written next to the waveform.

#### Warning



Service procedures described in this section are performed with the protective covers removed and power applied. Energy available at many points can, if contacted, result in personal injury. Servicing must be performed only by trained service personnel who are aware of the hazards involved (such as fire and electrical shock).

Table 8-49. Trigger Assembly Waveforms

All Jumpers should be in normal position Connect ground to A31 TP7 Probe type 10:1 **Parameters** Waveform Setup 10.24 MHz Time Connect CH1 to A31 TP12 Oscilloscope: CH1 V/Div 100 mV/Div CH1 Coupling dc Time/Div 20 ns/Div Trigger CH<sub>1</sub> 20.48 MHz Time Connect CH1 to A31 TP10 Oscilloscope: CH1 V/Div 100 mV/Div **CH1 Coupling** OVdc Time/Div 20 ns/Div Trigger CH<sub>1</sub> #2

All jumpers should be in normal position Connect ground to A31 TP7 Probe type 10:1

| Probe type 10:1                                        |                                     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------|-------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Set                                                    | ир                                  | Parameters           | Waveform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| SMP OUT                                                |                                     | Time                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Connect CH1 to A                                       | 31 TP17<br>(A31 U9-7)               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Oscilloscope:                                          |                                     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CH1 V/Div<br>CH1 Coupling                              | 100 mV/Div<br>dc                    |                      | OVdc Management of the control of th |
| Time/Div<br>Trigger                                    | 1 μs/Div<br>CH 1                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                        |                                     |                      | #3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CONV                                                   |                                     | Time                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Connect CH1 to A                                       | 31 U502-8                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Oscilloscope:                                          |                                     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CH1 V/Div                                              | 100 mV/Div                          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CH1 Coupling                                           | dc                                  |                      | 0Vdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Time/Div<br>Trigger                                    | 1 μs/Div<br>CH 1                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                        |                                     |                      | #4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                        | st" for the HP 3563A i              | nput and key press   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EXT TRIG (Level                                        | ·                                   | Time<br>Relationship |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Connect CH1 to A Connect CH2 to A                      |                                     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Oscilloscope:                                          | -                                   |                      | Ovdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CH1 V/Div<br>CH2 V/Div<br>CH1 Coupling<br>CH2 Coupling | 200 mV/Div<br>40 mV/Div<br>dc<br>dc |                      | OVdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Time/Div<br>Trigger                                    | 200 <i>μ</i> s/Div<br>CH 1          |                      | #5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Connect ground to A31 TP7
Refer to "Trigger Test" for the HP 3563A input and key presses.

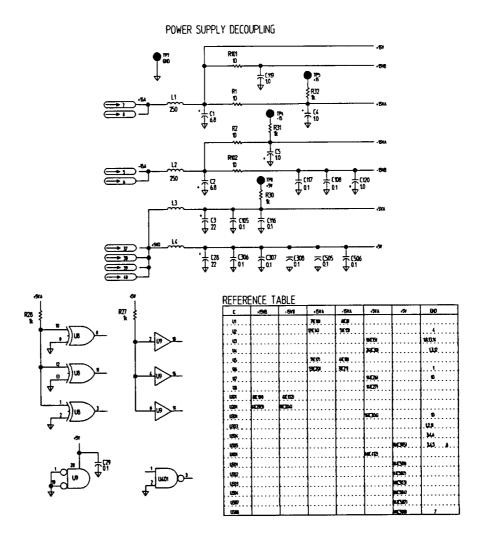
| Se               | etup        | Parameters           | Waveform                 |
|------------------|-------------|----------------------|--------------------------|
| CHAN 1 TRIG (L   | evel = 0V)  | Time<br>Relationship |                          |
| Connect CH1 to A | A31 TP3     | 110101101111         |                          |
| Connect CH2 to A |             |                      |                          |
|                  |             |                      |                          |
| Oscilloscope:    |             |                      | OVdc                     |
| •                |             |                      |                          |
| CH1 V/Div        | 200 mV/Div  |                      |                          |
| CH2 V/Div        | 100 mV/Div  |                      | ovdc                     |
| CH1 Coupling     | dc          |                      | 0000                     |
| CH2 Coupling     | dc          |                      |                          |
| Time/Div         | 200 μs/Div  |                      |                          |
| Trigger          | CH 1        |                      | #6                       |
|                  |             |                      |                          |
| CHAN2 TRIG (Le   | ivei = 2V)  | Time<br>Relationship |                          |
| Connect CH1 to A | A31 TP3     | Tiolationship        |                          |
| Connect CH2 to / |             |                      |                          |
|                  |             |                      |                          |
| Oscilloscope:    |             |                      | 0Vdc                     |
|                  |             |                      | <del>             </del> |
| CH1 V/Div        | 200 mV/Div  |                      |                          |
| CH2 V/Div        | 100 mV/Div  |                      | 2/4                      |
| CH1 Coupling     | dc          |                      | 0Vdc                     |
| CH2 Coupling     | dc          |                      |                          |
| Time/Div         | 200 μ s/Div |                      | <del>.</del>             |
| Trigger          | CH 1        |                      | #7                       |

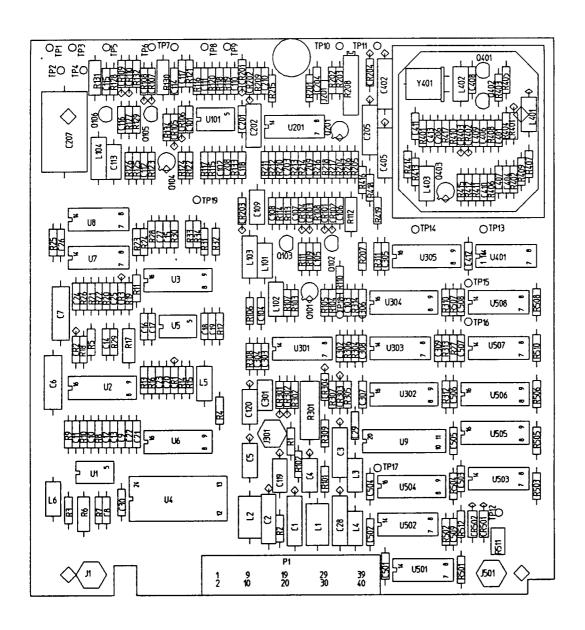
All jumpers should be in normal position Connect ground to A31 TP7 Probe type 10:1 Refer to "REF IN Test" for the HP 3563A input and key presses. Waveform **Parameters** Setup REF IN / 125 (1 MHz REF IN) Time Connect CH1 to A31 TP15 (A31 U305-11) Note: Duty cycle varies with board Oscilloscope: Rev. 100 mV/Div CH1 V/Div **CH1 Coupling** dc 0Vdc Time/Div  $50 \mu \text{ s/Div}$ CH<sub>1</sub> Trigger #8 REF IN 13 (1 MHz REF IN) Time Connect CH1 to A31 TP18 (A31 U303-8) Oscilloscope: CH1 V/Div 100 mV/Div 0Vdc **CH1 Coupling** dc Time/Div  $1 \mu s/Div$ Trigger CH<sub>1</sub> #9 3.413 MHz (1 MHz REF IN) Time Connect CH1 to A31 TP16 (A31 U507-5) Oscilloscope: CH1 V/Div 100 mV/Div 0Vdc **CH1 Coupling** dc 100 ns/Div Time/Div Trigger CH<sub>1</sub> #10

All jumpers should be in normal position Connect ground to A31 TP7 Probe type 10:1

Refer to "REF IN Test" for the HP 3563A input and key presses. Waveform **Parameters** Setup 80 kHz Filter (1 MHz REF IN) Time Connect CH1 to A31 TP16 (A31 U101-7) Oscilloscope: 0Vdc CH1 V/Div 50 mV/Div **CH1 Coupling** dc Time/Div  $5 \mu \text{ s/Div}$ CH 1 Trigger #11 REF IN / 3 (1 MHz REF IN) Time C

| Connect CH1 to A          | 31 TP16<br>(A31 U303-8) |      |         |   |   |     |    |  |   |
|---------------------------|-------------------------|------|---------|---|---|-----|----|--|---|
| Oscilloscope:             |                         |      | <u></u> |   |   |     | h- |  | H |
| CH1 V/Div<br>CH1 Coupling | 100 mV/Div<br>dc        | 0Vdc |         |   |   |     |    |  |   |
| Time/Div<br>Trigger       | 500 ns/Div<br>CH 1      |      |         | ļ |   | 412 |    |  |   |
|                           |                         | 1    |         |   | • | #12 |    |  |   |


All jumpers should be in normal position Connect ground to A31 TP7 Probe type 10:1 Refer to "REF IN Test" for the HP 3563A input and key presses. Waveform **Parameters** Setup REF IN / 3 (5 MHz REF IN) Time Connect CH1 to A31 TP18 (A31 U303-8) Oscilloscope: CH1 V/Div 100 mV/Div 0Vdc **CH1 Coupling** dc Time/Div 200 ns/Div CH<sub>1</sub> **Trigger** #13 REF IN /3 (10 MHz REF IN) Time Connect CH1 to A31 TP18 (A31 U303-8) Oscilloscope: CH1 V/Div 100 mV/Div 0Vdc **CH1 Coupling** dc Time/Div 200 ns/Div Trigger CH<sub>1</sub>


#14

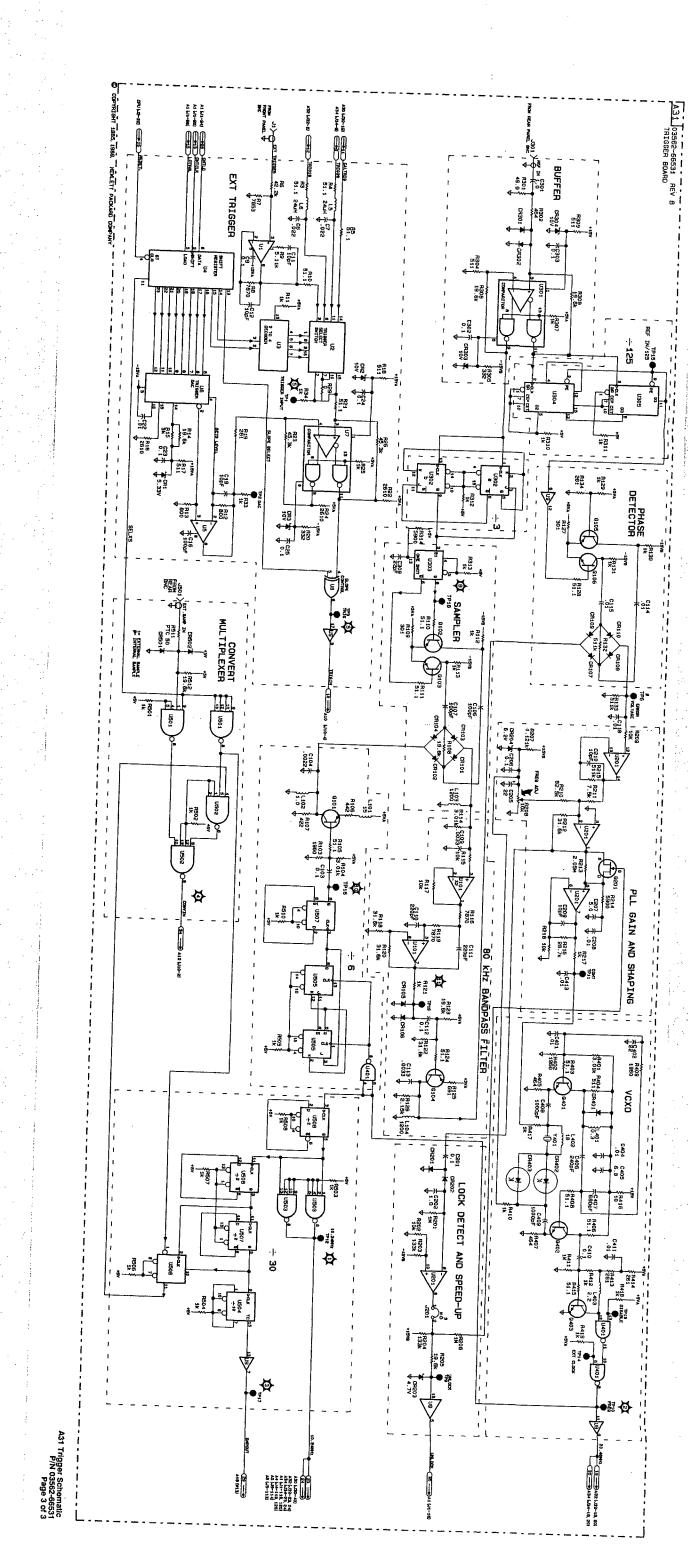

# **Trigger After-Repair Adjustments and Tests**

Table 8-50. After-Repair Adjustments and Tests

| Perform the following:                                                     | Section                                                |
|----------------------------------------------------------------------------|--------------------------------------------------------|
| Diagnostic Tests:<br>TESTALL                                               | VII                                                    |
| Adjustments:<br>20.48 MHz Reference                                        | III                                                    |
| Performance Tests:<br>None                                                 | II                                                     |
| Operational Verification: Frequency Accuracy Single Channel Phase Accuracy | II<br>(Chapter 3, <i>HP 3563A Installation Guide</i> ) |









The information in this section should be used to isolated faulty functional subblocks when servicing the HP 3563A. All procedures assume that you have used the Fault Isolation procedures in Section VII to determine this board has failed, and that you understand the Circuit Descriptions in Section VI.

## Warning



Service procedures described in this section are performed with the protective covers removed and power applied. Energy available at many points can, if contacted, result in personal injury. Servicing must be performed only by trained service personnel who are aware of the hazards involved (such as fire and electrical shock).

#### Caution



Do not insert or remove any circuit board in the HP 3563A with the line power turned on. Power transients caused by insertion or removal may damage the circuit boards. Many of the parts are static sensitive. Use the appropriate precautions when removing, handling, and installing all parts to avoid unneccessary damage.

Service HP 3563A

A32, A34 Analog-to-Digital Converter (ADC)

#### **How to Use This Section**

Start Three signals must be present for the ADC board to operate correctly.

Check for the presence of the following signals:

20.48 MHz clock at TP601
 10.24 MHz clock at TP607

3. 256 kHz (the CONVert signal) at TP600

All these signals are TTL and originate on the trigger board.

**Compare** Signals on the A32 board can be compared with signals on the A34 board since these

boards are identical.

Reference The component locator and schematic follow the "After-Repair Adjustments and Tests"

table. For the location of cables and boards refer to figure 4-1 in Section IV.

After-Repair Use table 8-55 to determine which adjustments and tests need to be done to complete

instrument service.

#### **Troubleshooting Hints**

1. The trigger board and the corresponding input board must be installed when power is applied so that the serial data (control data signal CNTLDAD) signal path is complete.

The A/D conversion process on both boards is controlled by the ADC board in Channel Two
(A34). See the discussion on master/slave selection in the circuit descriptions under the ADC
board.

## Signal Amplitudes vs Selected Range Test

This test may be used to check amplitudes of signals between amplifiers in the front end. Five ranges are given with a corresponding input signal level for each test point to thoroughly explore the operation of the range setting circuitry. Note that one of the check points is on the input board.

- 1. Disconnect the power cord from the rear panel and remove the top cover. Place the board to be checked on the extender board.
- 2. Connect the power cable and press the line switch on.
- 3. Connect a sine wave signal source to the front panel connector of the failing channel.
- 4. Press the HP 3563A keys as follows:

| Control ] |           |
|-----------|-----------|
| PRESET    | <br>RESET |

- 5. For each of the range settings in table 8-51 perform the following steps:
  - a. Set the signal source's amplitude to the input amplitude shown in the table.
  - b. Enter the corresponding range as follows:

| Input Setup | ] |                                  |
|-------------|---|----------------------------------|
| RANGE       |   | enter the range setting in table |

- c. Use a voltmeter or scope to measure the voltage values at each test point listed in the table.
- If multiple ranges fail, check the operation of the serial shift registers (U603, U203 and U202) and the switches they control (U100 and U200). The shift registers may be checked by monitoring the serial data line for activity and then checking the parallel outputs of the registers for the proper TTL levels as shown in table 8-52. Data flows on the serial data line immediately after entering range information on the front panel. Serial data is clocked in at pin 14 and out at pin 9 of each shift register.
- If the switches are being driven with the correct TTL levels for a given range but signal levels are not the same as shown in the table, troubleshoot the attenuator and amplifier circuits.

Table 8-51. Signal Amplitude versus Range Setting

|                           |                          | Range Setting (in dBV)   |                          |                          |                          |                          |
|---------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
|                           |                          | +9                       | 0                        | -5                       | - 36                     | <b>–</b> 51              |
| Input Signal<br>Amplitude | (Vrms)<br>(Vpk)          | 2.818<br>3.985           | 1.000<br>1.414           | 0.5623<br>0.7952         | 0.0158<br>0.0223         | 0.0028<br>0.0040         |
| A33 TP400<br>Amp 2        | (dBV)<br>(Vrms)<br>(Vpk) | - 11.9<br>0.254<br>0.359 | - 13.9<br>0.202<br>0.286 | - 5.92<br>0.506<br>0.716 | - 17.9<br>0.127<br>0.180 | - 32.0<br>0.025<br>0.035 |
| A32 TP101<br>Amp 3        | (dBV)<br>(Vrms)<br>(Vpk) | - 8.37<br>0.381<br>0.539 | - 8.37<br>0.381<br>0.539 | - 8.37<br>0.381<br>0.539 | - 8.37<br>0.381<br>0.539 | - 22.4<br>0.076<br>0.108 |
| A32 TP100<br>Amp 4        | (dBV)<br>(Vrms)<br>(Vpk) | 12.8<br>0.228<br>0.322   | - 12.8<br>0.228<br>0.322 | - 12.8<br>0.228<br>0.322 | - 12.8<br>0.228<br>0.322 | - 12.8<br>0.228<br>0.322 |

Note

All signal amplitudes listed have a tolerance of  $\pm$  5%.

Table 8-52. Range Setting vs Attenuator Setting

|                  |             | Atten a | #2 (A32 U20 | 0) pins |
|------------------|-------------|---------|-------------|---------|
| Range Setting    | Attenuation | (15)    | (16)        | (1)     |
| - 51 to - 36 dBV | 0 dBV       | 1       | 0           | 0       |
| - 35 to - 34 dBV | 2 dBV       | 1       | 0           | 1       |
| - 33 to - 32 dBV | 4 dBV       | 1       | 1           | 0       |
| - 31 to - 30 dBV | 6 dBV       | 1       | 1           | 1       |
| - 29 to - 28 dBV | 8 dBV       | 0       | 1           | 1       |
| - 27 to - 26 dBV | 10 dBV      | 0       | 1           | 0       |
| - 25 to - 24 dBV | 12 dBV      | 0       | 0           | 1       |
| - 23 to - 22 dBV | 2 dBV       | 1       | 0           | 1       |
| - 21 to - 20 dBV | 4 dBV       | 1       | 1           | 0       |
| - 19 to - 18 dBV | 6 dBV       | . 1     | 1           | 1       |
| - 17 to - 16 dBV | 8 dBV       | 0       | 1           | 1       |
| - 15 to - 14 dBV | 10 dBV      | 0       | 1           | 0       |
| - 13 dBV         | 12 dBV      | 0       | 0           | 1       |
| - 12 dBV         | 4 dBV       | 1       | 1           | 0       |
| - 11 to - 10 dBV | 6 dBV       | 1       | 1           | 1       |
| - 9 to - 8 dBV   | 8 dBV       | 0       | 1           | 1       |
| - 7 to - 6 dBV   | 10 dBV      | 0       | 1           | 0       |
| - 5 to - 4 dBV   | 12 dBV      | 0       | 0           | 1       |
| − 3 to − 2 dBV   | 2 dBV       | 1       | 0           | 1       |
| - 1 to 0 dBV     | 4 dBV       | 1       | 1           | 0       |
| + 1 to + 2 dBV   | 6 dBV       | 1       | 11          | 1       |
| + 3 to + 4 dBV   | 8 dBV       | 0       | 1           | 1       |
| + 5 to + 6 dBV   | 10 dBV      | 0       | 1           | 0       |
| + 7 dBV          | 12 dBV      | 0       | 0           | 1       |
| + 8 dBV          | 4 dBV       | 1       | 1           | 0       |
| + 9 to + 10 dBV  | 6 dBV       | 1       | 1           | 1       |
| + 11 to + 12 dBV | 8 dBV       | 0       | 11          | 1       |
| + 13 to + 14 dBV | 10 dBV      | 0       | 1           | 0       |
| + 15 to + 16 dBV | 12 dBV      | 0       | 0           | 1       |
| + 17 to + 18 dBV | 2 dBV       | 1       | 0           | 1       |
| + 19 to + 20 dBV | 4 dBV       | 1       | 1           | 0       |
| + 21 to + 22 dBV | 6 dBV       | 1       | 1           | 1       |
| + 23 to + 24 dBV | 8 dBV       | 0       | 1           | 1       |
| + 25 to + 26 dBV | 10 dBV      | 0       | 1           | 0       |
| + 27 dBV         | 12 dBV      | 0       | 0           | 1       |

Table 8-53. Range Setting vs Attenuator Setting

| Range Setting     | Attenuation | Atten | #3 (A32 U10 | 0) pins |
|-------------------|-------------|-------|-------------|---------|
| - 51 to - 50 dBV  | 0 dBV       | 1     | 0           | 0       |
| - 49 to - 48 dBV  | 2 dBV       | 1     | 0           | 1       |
| - 47 to - 46 dBV  | 4 dBV       | 1     | 1           | 0       |
| - 45 to - 44 dBV  | 6 dBV       | 1     | 1           | 1       |
| - 43 to - 42 dBV  | 8 dBV       | 0     | 1           | . 1     |
| - 41 to - 40 dBV  | 10 dBV      | 0     | 1           | 0       |
| − 39 to − 38 dBV  | 12 dBV      | 0     | 0           | 1       |
| -37  to  +27  dBV | 14 dBV      | 0     | 0           | 0       |

Note

Attenuator #1 is on the A33, A35 assemblies.



## No Signal Through The Main Data Path

This problem is either analog or digital. The signal is analog up to the process switch (at test point T/H OUT). Check the signal at this test point with a scope (and a IV sine wave input on the channel under test). For frequencies at or below 100 kHz the signal should appear as a sine wave because the T/H sampling rate (256 kHz) is much higher than the signal frequency. At higher frequencies the hold part of the track and hold circuit begins to show on the wave form. If there is no signal at test point T/H OUT then the analog circuit path is defective. The problem can be isolated by checking the signal at test points TP101, TP100, TP300 and T/H IN. Refer to table 8-51 for range and amplitude settings and expected signal levels at each test point.

#### TRACK AND HOLD CIRCUIT

The track and hold circuit is between test points T/H IN and T/H OUT. Before troubleshooting this circuit, check for a 256 kHz pulse train at TP600 and on the gate of Q400. This signal makes the T/H circuit track when high and hold when low. T/H OUT is identical (though inverted) to T/H IN while the circuit is tracking. These two signals may be overlaid on an oscilloscope display for comparison (as shown in the circuit descriptions section of this manual). The dc offset should be 50 mV or less and overshoot should be minimal. If high frequency oscillations are present at test point T/H OUT then C319, C400, or R402 may be defective.

The circuitry beyond T/H OUT converts the analog signal to a digital pulse stream (serial data). U602 on the ADC board in Channel 2 controls this process on both ADC boards. If the digital control of the digitizing circuits on Channel 1 is not correct and switching the boards corrects the problem, troubleshoot the controller on the original Channel 2 board.

#### **DIGITAL**

Most of U602 and some of the logic used to configure the ADC board is tested by diagnostic tests which are run from the front panel (as described in the fault isolation section). If the analog circuits are operating correctly and the problem can be isolated to the ADC board (by exchanging it with the ADC board in the other channel) then something in the digital portion of the data path is probably defective. This includes U601 (A/D converter), U602 (ADC controller), U600 (D/A converter), U406 and its supporting circuitry (finds the error voltage for second pass), and U405 (the process switch).

Refer to figure 8-14. This is the waveform appearing at TP405 with a 1 kHz input to the front panel. There are three distinct signals present which represent the three conversions as described in the theory of operation.

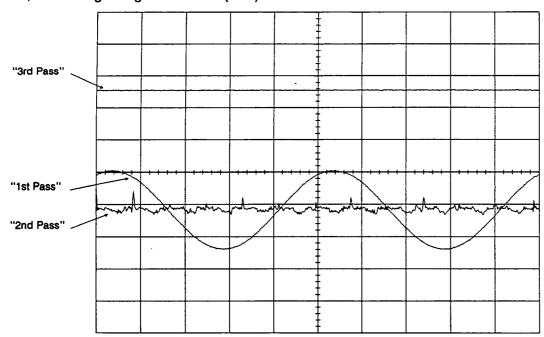



Figure 8-14. TP405 with a 1 kHz Input Signal

#### Distortion

A low distortion oscillator is required to troubleshoot distortion problems. Connect the oscillator output to the instrument input channel in question and view the results on the HP 3563A display. Harmonic distortion should be -80 dB or less.

Distortion may be caused by problems on the input boards or the ADC boards. The circuits on these boards include input amplifiers, variable attenuators, the track and hold circuits, and the A/D converters. The problem may be isolated between an input board or ADC board by bypassing the input and injecting a signal at the input of the ADC board. The selected range and signal amplitude necessary is shown in table 8-54 (signal level appears in the ADC input column). Again, distortion should be less than -80 dB and can be read from the instrument display. If there is no distortion when the input board is bypassed then troubleshoot the input board.

Distortion may be worse at one range setting than at others due to the various combinations of attenuator settings and the effective stress these combinations put on the different amplifier stages. Testing for distortion should be done such that the circuits being exercised are stimulated with a full scale signal. This varies from one stage to the next. Table 8-54 shows which stages are operating at maximum output level for a given range selection and corresponding signal level input.

| Set<br>Range<br>(dBV) | Amp 1 out<br>A33 TP601<br>(Vrms) | ADC input<br>A33 TP400<br>(Vrms) | Amp 3 out<br>A34 TP101<br>(Vrms) | Amp 4 out<br>A34 TP100<br>(Vrms) | Amplifiers<br>exercised |
|-----------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-------------------------|
| <b>–</b> 51           | .0085                            | .0254                            | .0761                            | 1.1477                           | 4 only                  |
| <b>– 37</b>           | .0424                            | .1271                            | .3814                            | 1.1477                           | 3 & 4                   |
| <b>- 24</b>           | .1893                            | .5061                            | .3814                            | 1.1477                           | 2,3,& 4                 |
| <b>–</b> 13           | .6716                            | .5061                            | .3814                            | 1.1477                           | 1,2,3,& 4               |
| <b>-</b> 5            | .1687                            | .5061                            | .3814                            | 1.1477                           | 2,3,& 4                 |
| +7                    | .6716                            | .5061                            | .3814                            | 1.1477                           | 1,2,3,& 4               |
| + 15                  | .1687                            | .5061                            | .3814                            | 1.1477                           | 2,3,&4                  |
| + 27                  | .6716                            | .5061                            | .3814                            | 1.1477                           | 1,2,3,& 4               |

Table 8-54. Range Settings and ADC Board Input Levels

#### Notes:

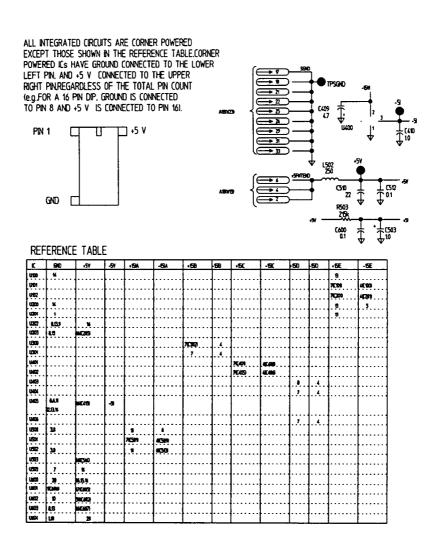
- The test points for Amp 1 output and ADC input are on the input board.
- Use the range setting value as a source output level when the test signal is connected to the front panel (channel) inputs.
- ADC input = Amp 2 output, so when connecting the source directly to the ADC board use the levels listed in the ADC column.

## Won't Trigger Off Individual Channel(s)

The signal used for triggering the instrument comes from the ADC board when Channel 1 or Channel 2 input triggering is selected. If the triggering works with an external trigger signal but not when individual channels are selected as the source of the trigger signal, then troubleshoot the path from TP100 through U501 to TP303.

## **Over Range and Half Scale Sensing Problems**

Over range and half scale sensing are done by comparators U500 and U502. The signal from U501 drives the TRG@ line as well as these comparators. Problems with this circuit may be examined by using a dc source as an input signal and testing the operation of the comparator circuits. A quick check may be done by shorting the positive reference (+6.2R) to pin 5 of U502 and then shorting the negative reference (-6.2R) to pin 9 of U500. Both the half scale and over range front panel LEDs should light when either connection is made. Keep in mind that the half scale output depends only on signals processed on the ADC board but the over range signal could be from the COVLD signal which is OR'd with the over range signal from the ADC board.


#### Offset D/A Converter

To determine whether an offset problem is in the data path components or the offset DAC, ground TP400 so that the DAC cannot provide any offset. With TP400 grounded there should be no more than 300 mV dc offset. If excessive offset is still present, the offset problem is in an amplifier circuit. If the offset is within limits with TP400 grounded, the offset problem may be U201, U202, or U203.

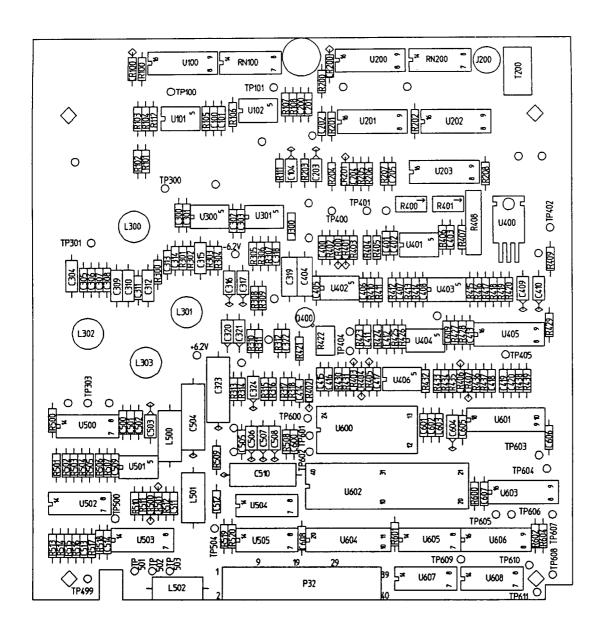
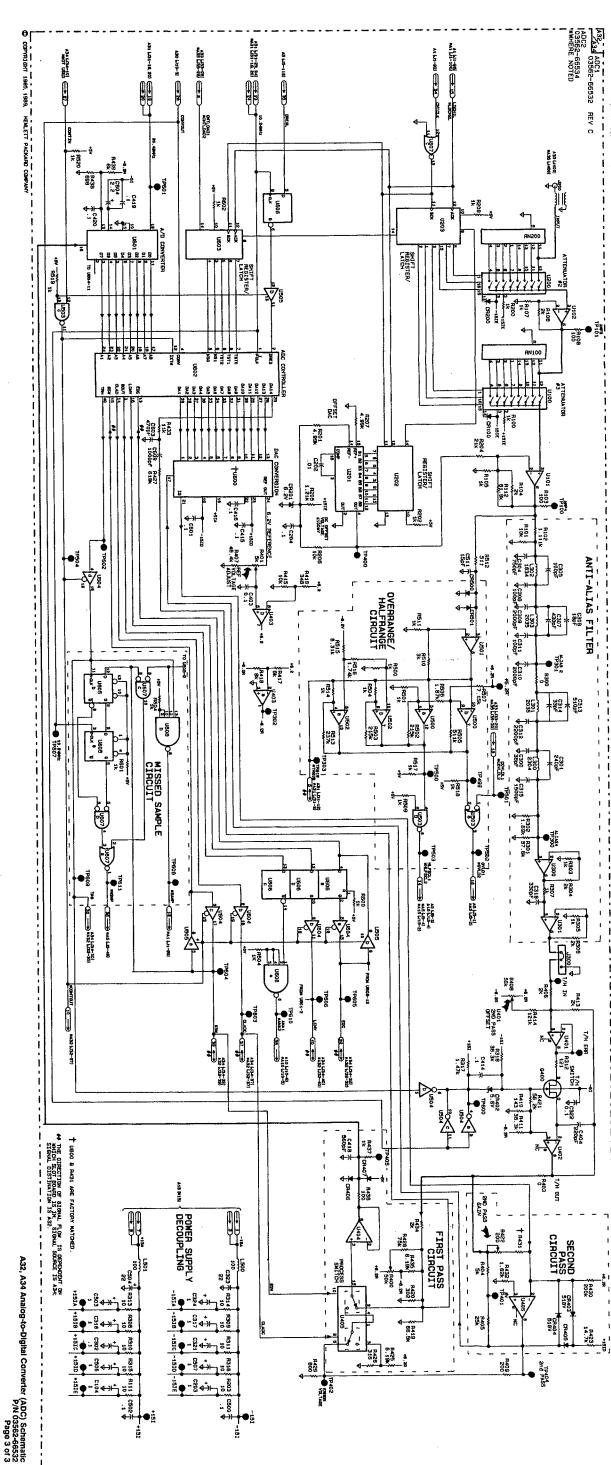

## **ADC After-Repair Adjustments and Tests**

Table 8-55. After-Repair Adjustments and Tests


| Perform the following:                                                                                            | Section                                                |  |  |
|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|--|
| Diagnostic tests:<br>TEST ALL                                                                                     | VII                                                    |  |  |
| Adjustments: Second pass gain ADC offset and reference Track and hold offset                                      | III                                                    |  |  |
| Performance Tests: Amplitude Accuracy and Flatness                                                                | ll<br>(Chapter 4, <i>HP 3563A Installation Guide</i> ) |  |  |
| Operational verification: Amplitude and Phase Match Single Channel Phase Accuracy Noise and Spurious Signal Level | ll<br>Chapter 3, <i>HP 3563A Installation Guide</i>    |  |  |



A32, A34 Analog-to-Digital Converter (ADC) Ground and Power Chart P/N 03562-66532 Rev C Page 1 of 3



A32, A34 Analog-to-Digital Converter (ADC) Component Locator P/N 03562-66532 Rev C Page 2 of 3



## **A33, A35 Input**

The information in this section should be used to isolate faulty subblocks in the A33 and A35 input assemblies. All procedures assume that you have used the Fault Isolation procedures in Section VII to determine this board has failed, and that you understand the Circuit Descriptions in Section VI.

## Warning



Service procedures described in this section are performed with the protective covers removed and power applied. Hazardous voltage and energy available at many points can, if contacted, result in personal injury. Servicing must be performed only by trained service personnel who are aware of the hazards involved (such as fire and electrical shock).

#### Caution



Do not insert or remove any circuit board in the HP 3563A with the line power turned on. Power transients caused by insertion or removal may damage the circuit boards. Many of the parts are static sensitive. Use the appropriate precautions when removing, handling, and installing all parts to avoid unneccessary damage.

## **How to Use This Section**

**Start** The primary method for troubleshooting the input assembly is to input a sine wave at

A33 J300 and check the signal and voltage values at various test points in the circuit. Start with "Signal Amplitudes versus Range Setting Test". Use table 8-57 when a group

of ranges are failing to determine most likely component failure.

Compare Signals on the A33 board can be compared with signals on the A35 board since these

boards are identical. Also, on each board the high input circuit and low input circuit are

identical up to A33 TP600 and A33 TP500.

Reference The component locator and schematic follow the "After-Repair Adjustments and Tests"

table. For the location of cables and boards refer to figure 4-1 in Section IV.

Verify Use table 8-56 to verify the input is operating correctly. Use the oscilloscope waveforms

in table 8-58 to see correct operation of assembly.

After-Repair Use table 8-59 to determine which adjustments and tests need to be done to complete

instrument service.

### **Troubleshooting Hints**

1. If all ranges are failing, check the relays and the shift registers.

2. If the voltage level at A33 TP501 is not correct, check the common mode rejection DAC subblock.

## Signal Amplitudes Versus Range Setting Test

- 1. Disconnect the power cord from the rear panel and remove the top cover. Remove the cover shield MP401 and place the failing input board on the extender board.
- 2. Connect the extender cable to A33 J300.
- 3. Connect the power cable and press the line switch ON.
- 4. Input a 1 kHz sine wave into the BNC input connector of the failing channel; high on pin 3 and ground on pin 1.
- 5. Press the HP 3563A keys as follows:

Control PRESET RESET

[Input Setup ]
INPUT
CONFIG .... GROUND
CHAN1 .... GROUND
CHAN2

Table 8-56. Signal Amplitude vs Range Setting

All signal amplitudes listed have a tolerance of  $\pm$  5%.

|                                      |                          | Range Setting (in dBV)   |                          |                          |                            |                            |  |
|--------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|----------------------------|----------------------------|--|
|                                      |                          | + 9                      | 0                        | -5                       | -36                        | -51                        |  |
| Input Signal<br>Amplitude            | (Vrms)<br>(Vpk)          | 2.818<br>3.985           | 1.000<br>1.414           | 0.5623<br>0.7952         | 0.0158<br>0.0223           | 0.0028<br>0.0040           |  |
| A33 TP601<br>Difference<br>Amplifier | (dBV)<br>(Vrms)<br>(Vpk) | - 31.0<br>0.028<br>0.049 | - 20.0<br>0.100<br>0.141 | - 25.0<br>0.562<br>0.794 | - 36.0<br>0.0158<br>0.0223 | - 52.0<br>0.0028<br>0.0040 |  |
| A33 TP402<br>Amp 1                   | (dBV)<br>(Vrms)<br>(Vpk) | - 21 5<br>0.085<br>0.120 | - 10.5<br>0.300<br>0.424 | - 15.5<br>0.169<br>0.239 | - 26.5<br>0.047<br>0.067   | - 41.5<br>0.0084<br>0.012  |  |
| A33 TP400<br>Amp 2                   | (dBV)<br>(Vrms)<br>(Vpk) | - 11.9<br>0.254<br>0.359 | - 13.9<br>0.202<br>0.286 | - 5.92<br>0.506<br>0.716 | -17.9<br>0.127<br>0.180    | - 32.0<br>0.025<br>0.035   |  |

- 6. For each of the range settings in table 8-56 perform steps a through d:
  - a. Set the sine wave's amplitude to the input amplitude in the table.
  - b. Press the HP 3563A keys as follows:

| [ Input Setup ] |                           |
|-----------------|---------------------------|
| RANGE           | To range setting in table |

- c. Using a voltmeter or scope, measure the voltage values at each test point listed in the table.
- d. If the voltages values are correct, the high input side is most likely operating correctly.
- 7. To test the low input side, input a 1 kHz sine wave into the BNC input connector of the failing channel; high on pin 1 and ground on pin 3.
- 8. For each of the range settings in table 8-56 perform steps a through d:
  - a. Set the sine wave's amplitude to the input amplitude in the table.
  - b. Press the HP 3563A keys as follows:

Input Setup
To range setting in table

Input Setup

INPUT

COUPLE

FLOAT

CHAN1

FLOAT

c. Using a voltmeter or scope, measure the voltage values at A33 TP601.

CHAN2

d. If the voltages values are correct, the low input side is most likely operating correctly.

# Range Setting vs. Attenuator Setting

Use table 8-57 when a group of ranges are failing to determine the most likely component failure.

Table 8-57. Range Setting vs Attenuator Setting

|                       |             | Comp                       | onent                    |
|-----------------------|-------------|----------------------------|--------------------------|
| Range Setting         | Attenuation | High Input<br>(BNC Center) | Low Input<br>(BNC Shell) |
| - 51 to - 13 dBV      | 0 dBV       | A33 K207                   | A33 K107                 |
| - 12 to 7 dBV         | 20 dBV      | A33 K206<br>A33 K208       | A33 K106<br>A33 K108     |
| 8 to27 dBV            | 40 dBV      | A33 K205<br>A33 K209       | A33 K105<br>A33 K109     |
|                       |             | Attenuator #1              | (A33 U401)               |
|                       |             | (16)                       | (1)                      |
| - 51 to - 25 dBV odd  | 0 dBV       | 0                          | 0                        |
| - 50 to - 24 dBV even | 1 dBV       | 0                          | 1                        |
| - 23 to - 13 dBV odd  | 12 dBV      | 1                          | 0                        |
| - 22 to - 14 dBV even | 13 dBV      | 1                          | 1                        |
| - 12 to - 4 dBV even  | 1 dBV       | 0                          | 1                        |
| - 11 to - 5 dBV odd   | 0 dBV       | 0                          | 0                        |
| - 3 to 7 dBV odd      | 12 dBV      | 1                          | 0                        |
| - 2 to 6 dBV even     | 13 dBV      | 1                          | 1                        |
| 8 to 16 dBV even      | 1 dBV       | 0                          | 1                        |
| 9 to 15 dBV odd       | 0 dBV       | 0                          | 0                        |
| 17 to 27 dBV odd      | 12 dBV      | 1                          | 0                        |
| 18 to 26 dBV even     | 13 dBV      | 1                          | 1                        |

Attenuators #2 and #3 are on the A32, A34 assemblies

### **Input Assembly Waveforms**

The oscilloscope plots are used for troubleshooting the A33, A35 input assemblies. Note that all the measurements are taken with a 10:1 probe. Other notes unique to a measurement are written next to the waveform.

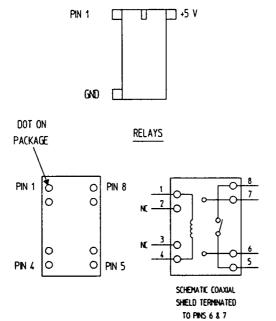
### To input a 1 kHz sine wave perform steps 1 through 5:

- 1. Disconnect the power cord from the rear panel and remove the top cover. Remove the cover shield MP401 and place the input board on the extender board.
- 2. Connect the extender cable to A33 J300.
- 3. Connect the power cable and press the line switch ON.
- 4. Input a 1 kHz sine wave with an amplitude of 1 Vrms into the BNC input connector of the failing channel. Terminate the signal at the front panel connector with a load that matches the signal source impedance.
- 5. Press the HP 3563A keys as follows:

| Control PRESET | •••• | RESET  |
|----------------|------|--------|
| Input Setup    | 1    | 1 Vrms |

# Table 8-58. Input Assembly Waveforms

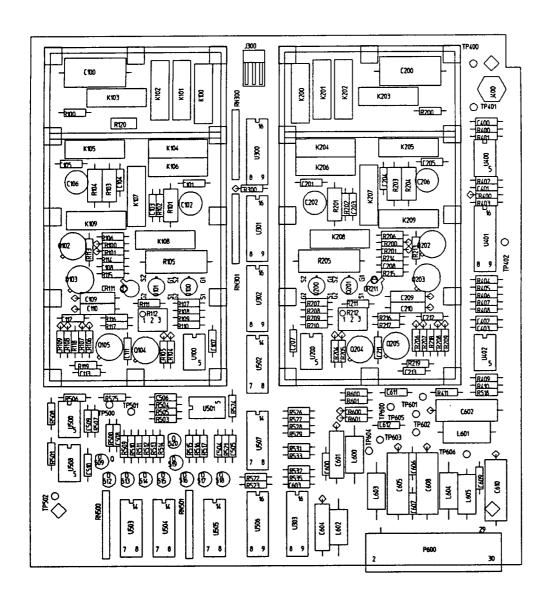
Jumpers in test position: All Normal Connect ground to A33 TP401 Probe type 10:1


| 1 1000 type 10:1                                    |                    |                        |                                |  |  |  |  |
|-----------------------------------------------------|--------------------|------------------------|--------------------------------|--|--|--|--|
| Seti                                                | ир                 | Parameters             | Waveform                       |  |  |  |  |
| Bootstrap Circuit                                   |                    | Waveshape<br>Amplitude | CH1 CPLG=DC<br>CH1= 100.mV/Div |  |  |  |  |
| Connect CH1 to A                                    | 33 U200-7          | Amplitude              |                                |  |  |  |  |
| Oscilloscope:<br>Mode                               | A                  |                        |                                |  |  |  |  |
| CH1 V/Div<br>CH1 Coupling                           | 100 mV/Div<br>dc   |                        |                                |  |  |  |  |
| Time/Div 2 ms/Div<br>Trigger EXT + 1,<br>A33 J300-1 |                    |                        | OVdc MT-EXT MAIN- 2 mS/D1~     |  |  |  |  |
| TP601                                               |                    | Waveshape              | CHI CPLG-DC                    |  |  |  |  |
| Connect CH1 to A33 TP601                            |                    | Amplitude              | CHI CPLG-BC CHI- 5.00mV/Div    |  |  |  |  |
| Oscilloscope:<br>Mode                               | A                  |                        | 0Vdc                           |  |  |  |  |
| CH1 V/Div<br>CH1 Coupling                           | 5 mV/Div<br>dc     |                        |                                |  |  |  |  |
| Time/Div<br>Trigger                                 | 200 μs/Div<br>CH 1 |                        | MT-CH1 MRIN- 200.uS/D1v        |  |  |  |  |
|                                                     |                    |                        | #2                             |  |  |  |  |
| TP400  Connect CH2 to A                             | 22 TB400           | Waveshape<br>Amplitude | CH1 CPLG-DC<br>CH1= 10.0mV/D:v |  |  |  |  |
| Oscilloscope:                                       | A                  |                        |                                |  |  |  |  |
| CH1 V/Div<br>CH1 Coupling                           | 10 mV/Div<br>dc    |                        | Ovdc                           |  |  |  |  |
| Time/Div<br>Trigger                                 | 200 μs/Div<br>CH 1 |                        | MT-CH1 MRIN- 200. uS/D1v       |  |  |  |  |
|                                                     |                    |                        | #3                             |  |  |  |  |

# Input Assembly After-Repair Adjustments and Tests

Table 8-59. After-Repair Adjustements and Tests

| Perform the following:                                                                                                                                | Section                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Diagnostic Tests: FR END FUNCTION TEST ALL                                                                                                            | VII                                            |
| Adjustments:<br>Input DC Offset Adjustment                                                                                                            | III                                            |
| If a component in the input switches/attenuators subblocks was replaced perform the following adjustments:                                            |                                                |
| Input 40 dB Attenuator Adjustment<br>Input 20 dB Attenuator Adjustment                                                                                |                                                |
| The input and ADC boards are adjusted in pairs. If an input or ADC board was switched perform the following adjustments:                              |                                                |
| 2nd Pass Gain Adjustment ADC Offset and Reference Adjustment Track and Hold Offset Adjustment Input DC Offset Adjustment Input Attenuator Adjustments |                                                |
| Performance Tests: Amplitude Accuracy and Flatness                                                                                                    | II<br>(Chapter 4, HP 3563A Installation Guide) |
| Operational Verification: Amplitude and Phase Match Common Mode Rejection Single Channel Phase Accuracy Noise and Spurious Signal Level               | II<br>(Chapter 3, HP 3563A Installation Guide) |


ALL INTEGRATED CIRCUITS ARE CORNER POWERED EXCEPT THOSE SHOWN IN THE REFERENCE TABLE.CORNER POWERED ICS HAYE GROUND CONNECTED TO THE LOWER LEFT PIN, AND +5 V CONNECTED TO THE UPPER RIGHT PIN.REGARDLESS OF THE TOTAL PIN COUNT (e.g.FOR A 16 PIN DIP, GROUND IS CONNECTED TO PIN 8 AND +5 V IS CONNECTED TO PIN 16).



PINS 6 & 7 ARE GROUNDED IN <u>ALL</u> RELAYS

### REFERENCE TABLE

| K             | GND   | +50   | V٠ | ٧- | NC. |   |
|---------------|-------|-------|----|----|-----|---|
| U300          | 8     | 1     |    |    |     | 9 |
| U301          | 8     |       |    |    |     | 9 |
| U <b>3</b> 02 | 8     | 16    |    |    |     |   |
| U <b>3</b> 03 | 8,13  | 10,16 |    |    |     |   |
| U400          |       |       | 7  | 4  | . t |   |
| U401          | 15.14 |       | 13 |    |     |   |
| U402          |       |       | 7  | 4  |     |   |
| U500          |       |       | 7  | 4  |     |   |
| U501          |       |       | 7  | 4  |     |   |
| U502          | 7     | и     |    |    |     |   |
| U503          |       | 3     |    | 12 |     |   |
| U504          |       | 3     |    | 12 |     |   |
| U505          |       | 3     |    | 12 |     |   |
| U506          | 8     | 10,16 |    |    |     |   |
| U507          | 3,8   |       | 11 | 6  | 1,2 |   |
| U508          |       |       | 7  | 4  |     |   |

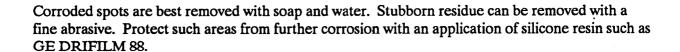


ÎPYRIGHT 1985, 1989, HENLETT PACKARD CONPANY CONTRACT (BYVOO) DIFFERENCE COOP AMPLIFIER 8.200 Ž, 100 SHIFT ( M 41-71 (-11) 11 AMPLIFIER \*\*\* ATTENUATOR #1000 #1000 E CONTROL OF THE PARTY OF THE P A33, A35 Input Schematic P/N 03562-66533 Page 3 of 3 2000 20 CO



### Introduction

This section contains instructions for troubleshooting and repairing the HP Digital Display. Use this section after performing the adjustment procedures in Section III. This section is used to isolate a failure to the subblock level. Each functional subblock consists of a small number of components, and the technician's expertise is relied upon to isolate the faulty component.


### **Preventive Maintenance**

Painted surfaces can be cleaned with a commercial, spray-type window cleaner or with a mild soap and water solution.

### Caution



Do not use chemical cleaning agents that might damage the plastics used in this instrument. Recommended cleaning agents are isopropyl alcohol, kelite (1 part kelite, 20 parts water), or a solution of 1% mild detergent and 99% water.



### **How to Use This Section**

#### Start

Perform the adjustment procedures listed in Section III of this manual. Some apparent malfunctions may be corrected by these adjustments, or failure to obtain a correct adjustment will often reveal the source of the trouble. The procedures are arranged in the recommended sequence of troubleshooting, not in the order of the circuit board assembly number.

### Reference

Use the component locators and schematics with each of the troubleshooting procedures.

For the location of cables and boards refer to figure 4-4 in Section IV.

For the circuit block diagrams refer to Section VI.

To understand the display's operation and signal mnemonics refer to Section VI.

# Note

After completing a test or repair, check that all jumpers are in the NORMAL or RUN position and that all cables are connected.

## **Logic Conventions**

Positive logic convention is used in this manual unless otherwise noted. Positive logic conventions define a logic "1" or "High" as more positive voltage and a logic "0" or "Low" as the more negative voltage.

### **Logic Symbols**

The logic symbols used in this manual is based on ANSI Y32.14-1973. The purpose of these symbols is to graphically represent device functions so that operation can be understood without having to "look up" how a device works. Basic logic symbols and examples of symbols are shown in figure 8-23. Table 8-61 provides an explanation of function labels used in the schematics.

### Waveforms and dc Voltages

Waveforms, dc voltages, and conditions for making these measurements are given on the test pattern illustrations. Since conditions for making measurements may differ from one circuit to another, always check the specific conditions listed for each schematic.

## **Recommended Test Equipment**

The recommended test equipment for troubleshooting is listed in table 1-2. Any item which meets or exceeds the critical requirements can be substituted for the model listed.

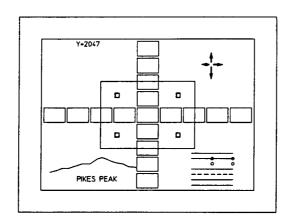


The HP 3563A is a Safety Class 1 instrument (provided with a protective earth terminal). The instrument and manuals should be reviewed for safety markings and instructions before operation. Refer to the safety symbol table in the preface of this manual.

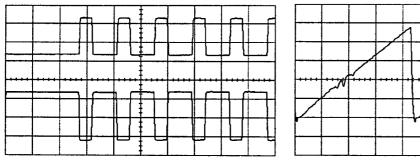
## Warning



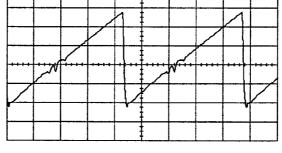
Service procedures described in this section are performed with the protective covers removed and power applied. Hazardous voltage and energy available at many points can, if contacted, result in personal injury.


Table 8-60. Assembly Schematic Locator

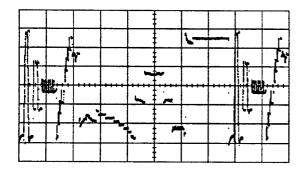
| Order | Assembly | Name                               |  |
|-------|----------|------------------------------------|--|
| 1     |          | Block Diagram                      |  |
| 2     | A82      | Vector Processor Control           |  |
| 3     | A81      | X-Y-Z- Amplifier, Stroke Generator |  |
| 4     | A83      | Low Voltage Power Supply           |  |
| 5     | A80      | High Voltage Power Supply          |  |
| 6     | A84      | Memory                             |  |



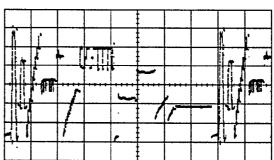

When the A84 Memory Option assembly is installed, jumper packs A82 U3 and A82 U4 must be removed.


# **HP Digital Display**



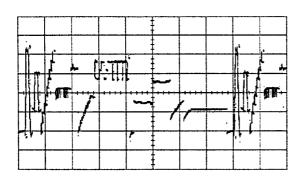

Obtain Primary Test Pattern As Shown Above

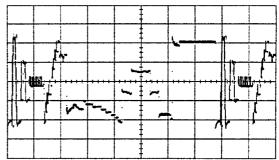



Top: LRFD A82, U17 Pin 3 Bottom: LDAV A82, U17 Pin 2V/Div, 50  $\mu$  s/Div



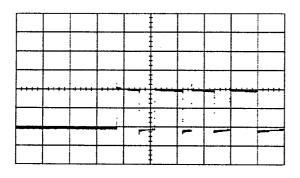
Top: A84, Pin 7 Bottom: A83, Q1 Collector .5 V/Div, 5  $\mu$ s /Div

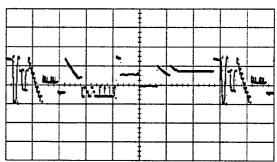




Y DAC Output 200 mV/Div, 2 ms/Div



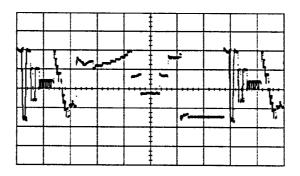
XDAC Output 200 mV/Div, 2 ms/Div


Figure 8-15. HP Digital Display Waveforms






Auxiliary Output at A81 J5 .5 V/Div, 2 ms/Div


Auuxiliary Y Output at A81 J4 .5 V/Div, 2 ms/Div





Auxiliary Z Output at A81 J3 .5 V/Div,  $100 \mu s/Div$ 

X Output at A81 Q8 Collector (To Horizontal CRT Deflection Plates) 20 V/Div, 2 ms/Div



Y Output at A81 Q14 Collector (To Vertical CRT Deflection Plates) 20 V/Div, 2 ms/Div

# **HP Digital Display Waveforms continued**

### **A82 Vector Processor**

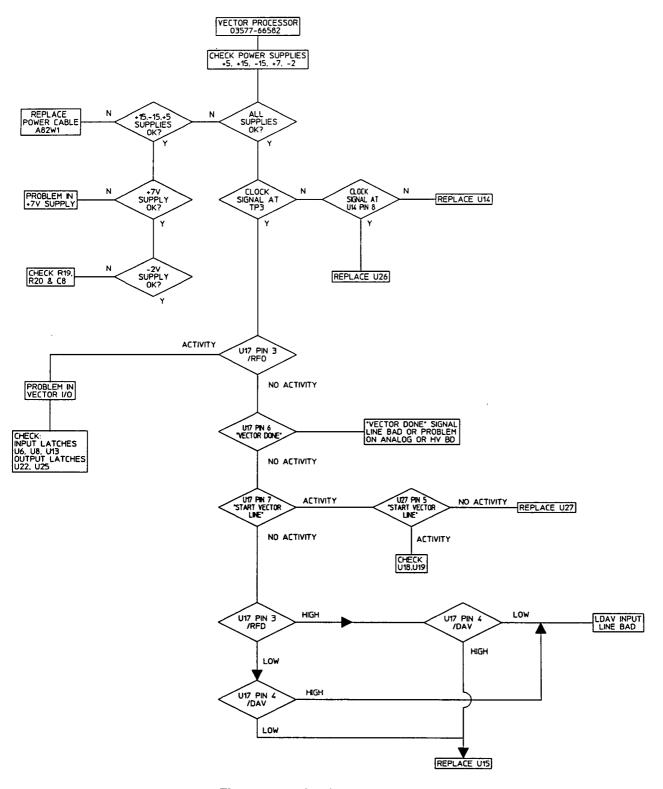
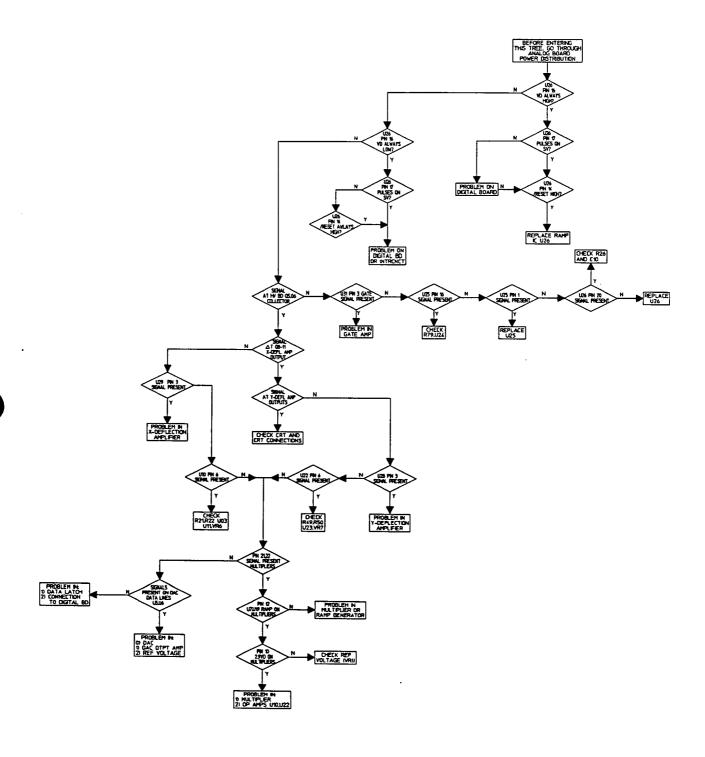
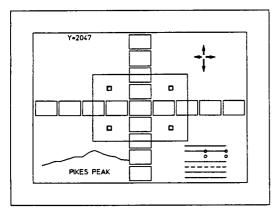
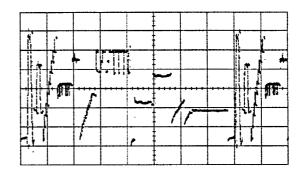
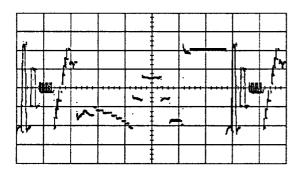


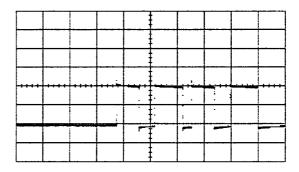

Figure 8-16. A82 Vector Processor Troubleshooting Procedure

# A81 X-Y-Z Amplifier/Stroke Generator



Figure 8-17. A81 X-Y-X Amplifier / Stroke Generator Troubleshooting Procedure




Obtain Primary Test Pattern As Shown Above



Auxiliary X Output at A81 J5 .2 V/Div, 2 ms/Div



Auxiliary Y Output at A81 J4 .5 V/Div, 2 ms/Div



Auxiliary Z Output at A81 J3 .5 V/Div 100  $\mu$  s/Div

Figure 8-18. A81 X-Y-Z Amplifier / Stroke Generator Waveforms

## **A83 Low Voltage Power Supply**

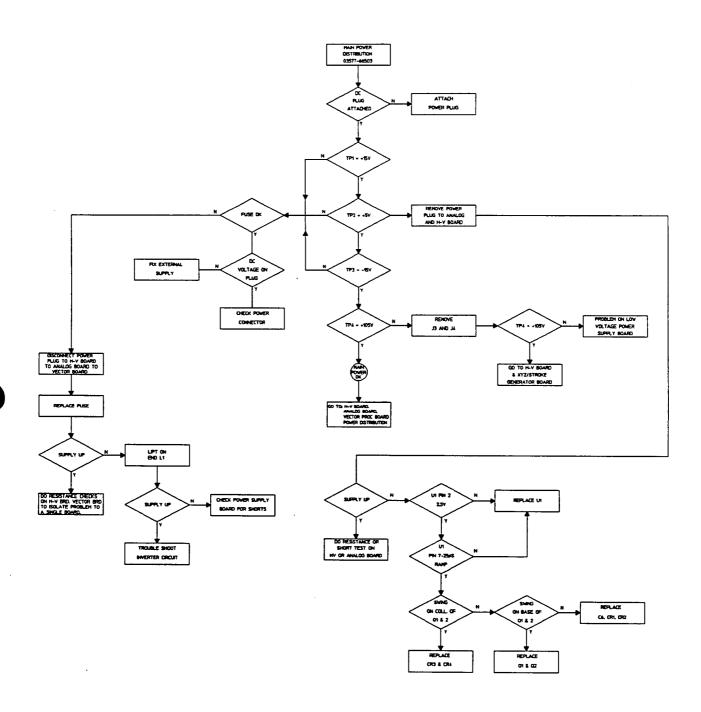



Figure 8-19. A83 Low Voltage Power Supply Troubleshooting Procedure

# **A80 High Voltage Power Supply**

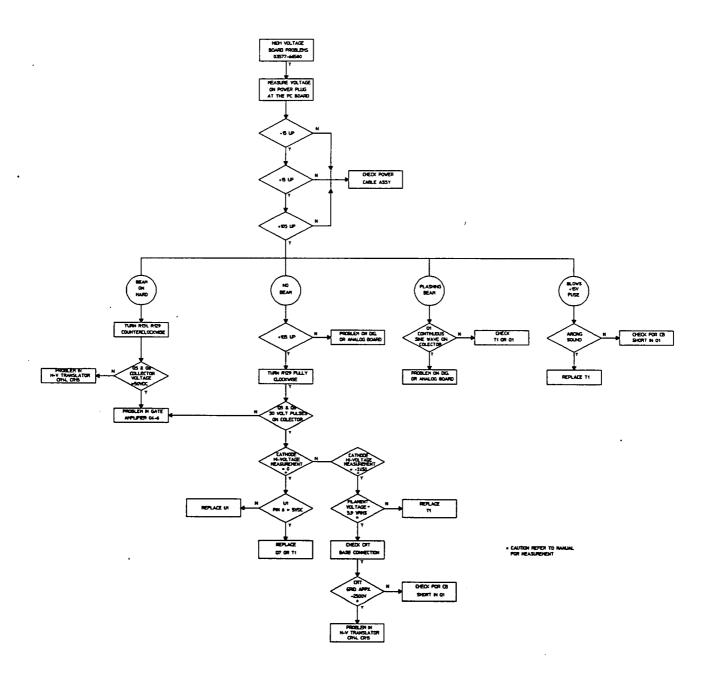



Figure 8-20. A80 High Voltage Power Supply Troubleshooting Procedure

## **A84 Memory**

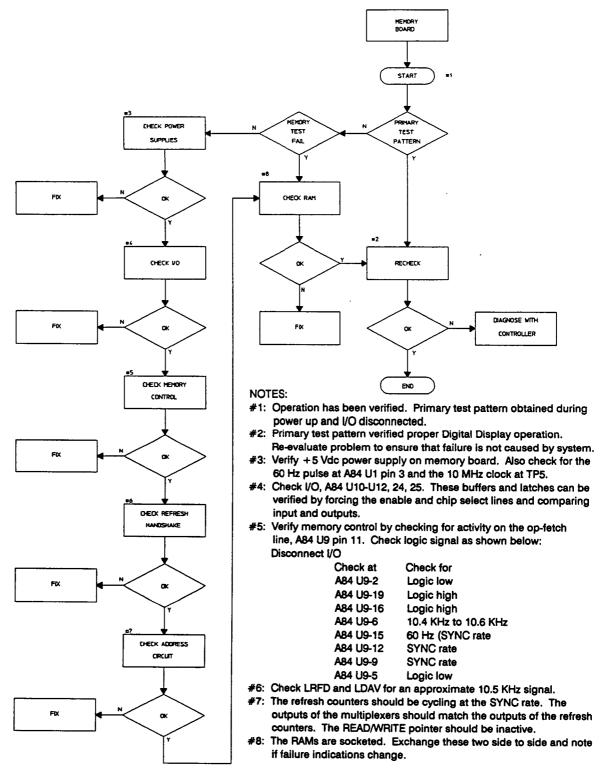



Figure 8-21. A84 Memory Circuit Troubleshooting Procedure

## Symbols and Labels

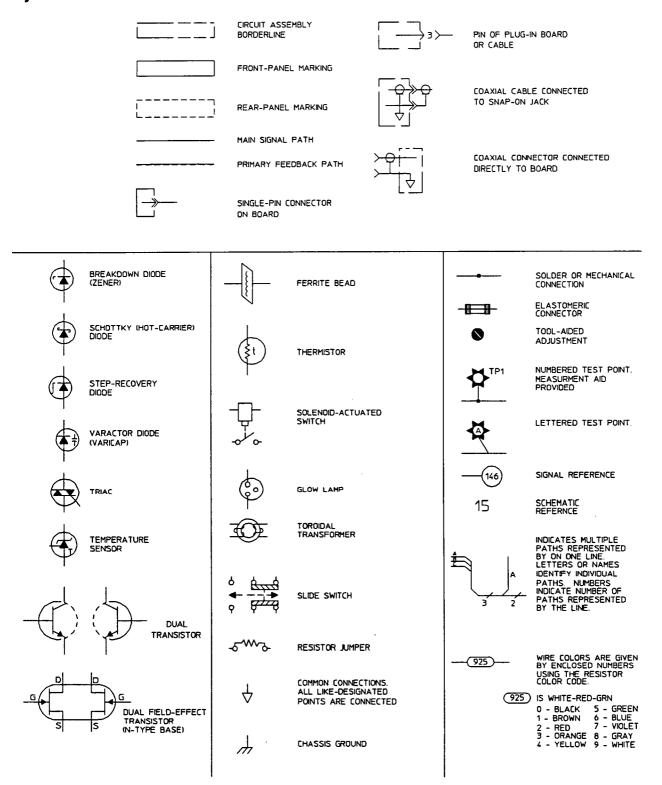
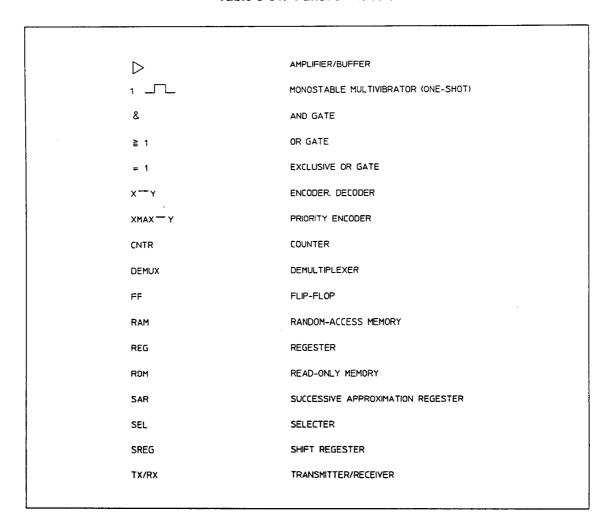
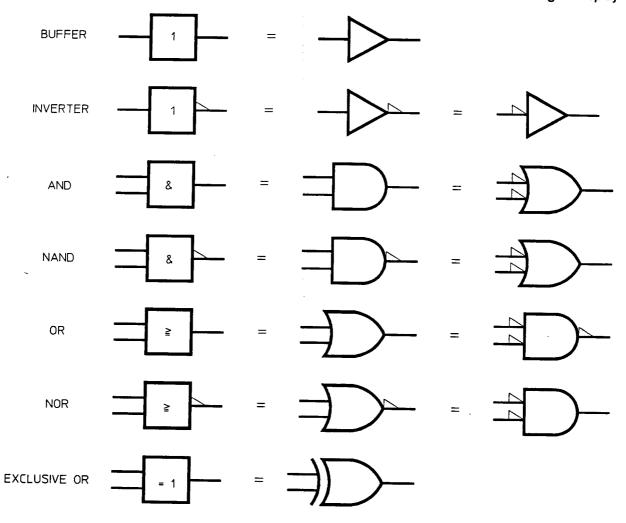





Figure 8-22. Schematic Diagram Symbols

Table 8-61. Function Labels





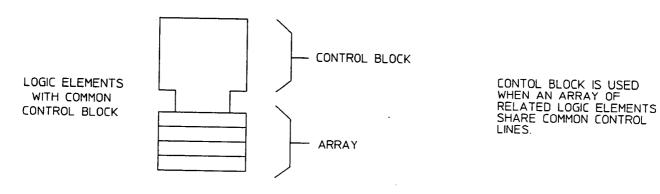



Figure 8-23. Basic Logic Symbols

HP 3563A Service

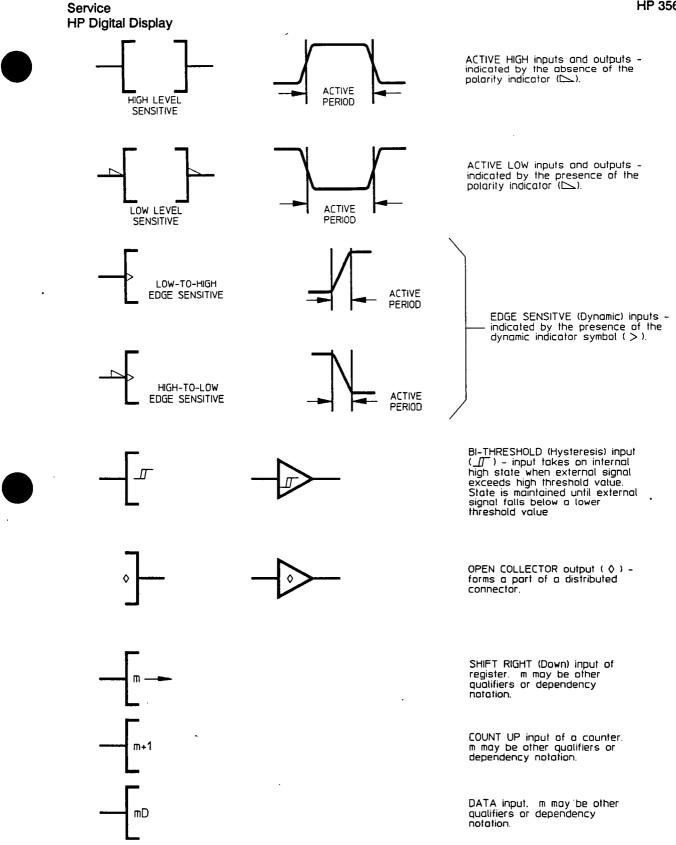
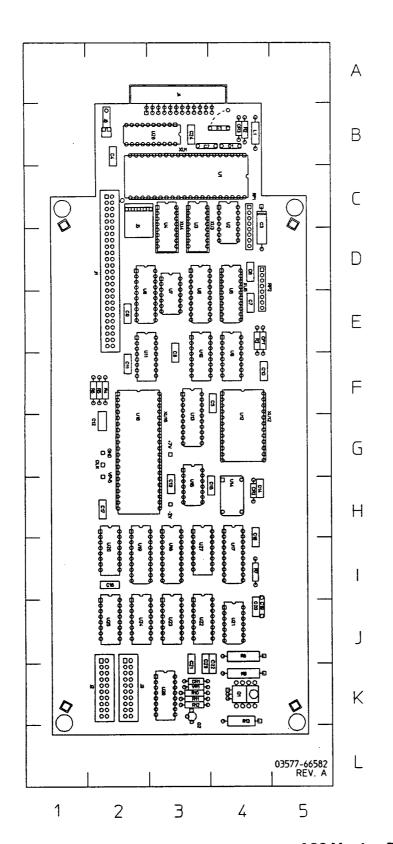
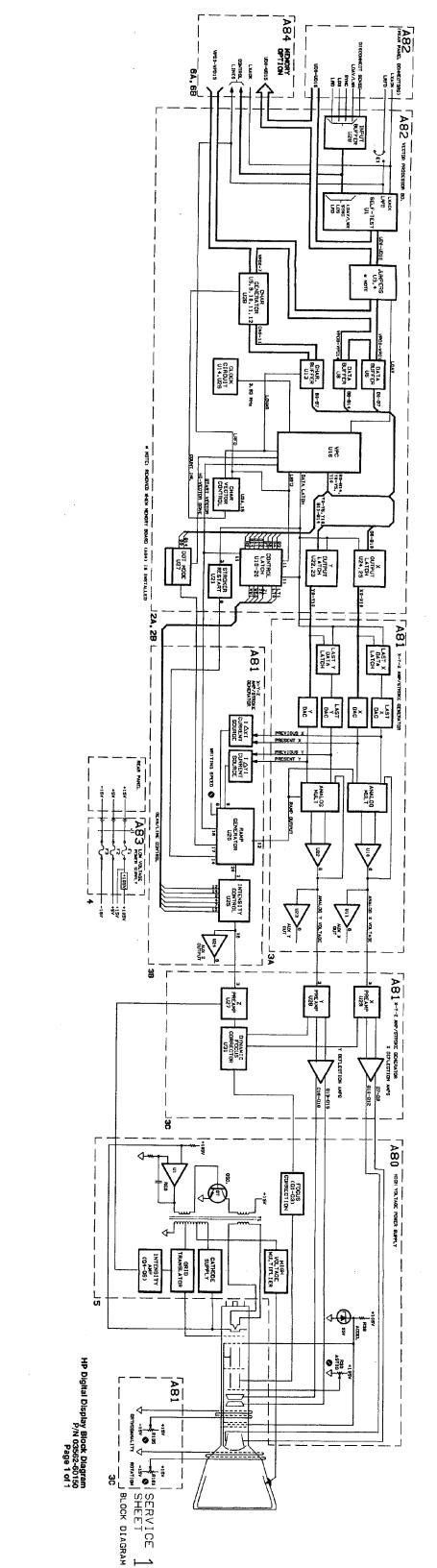
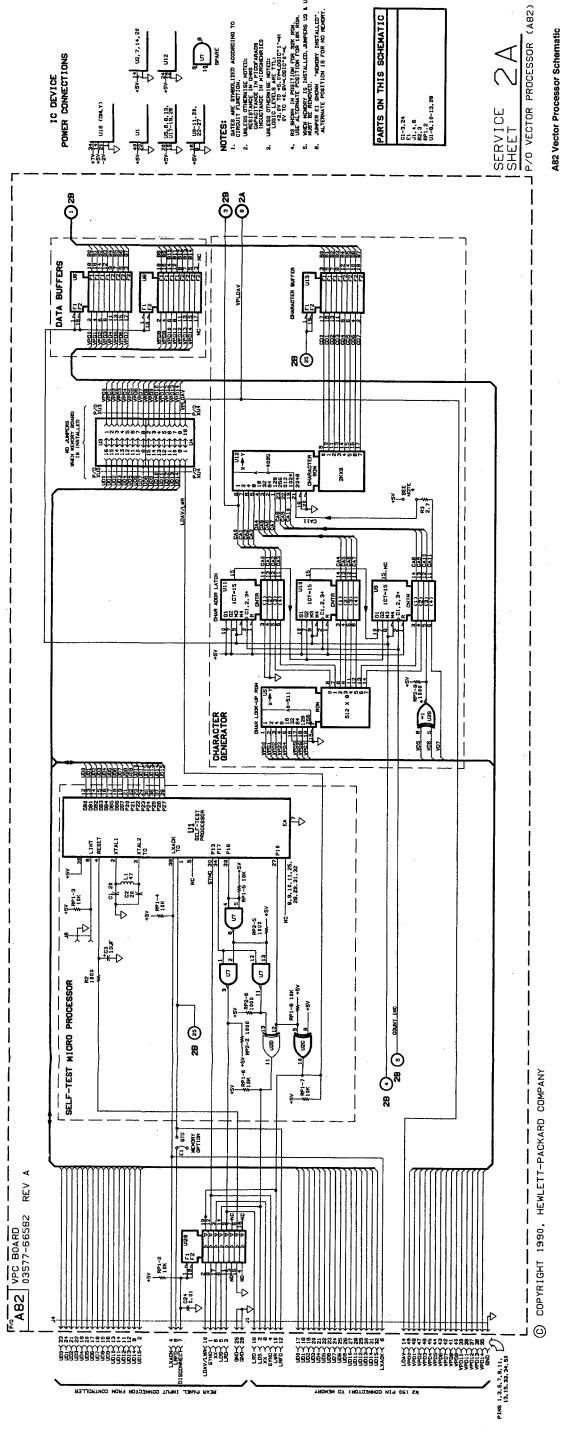
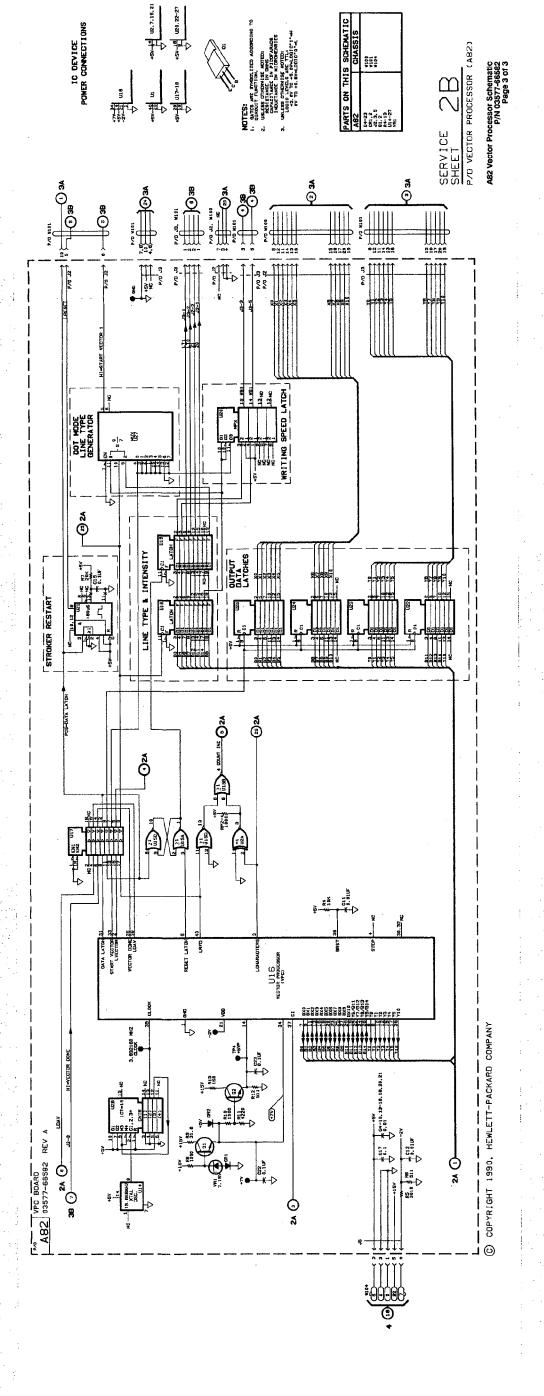
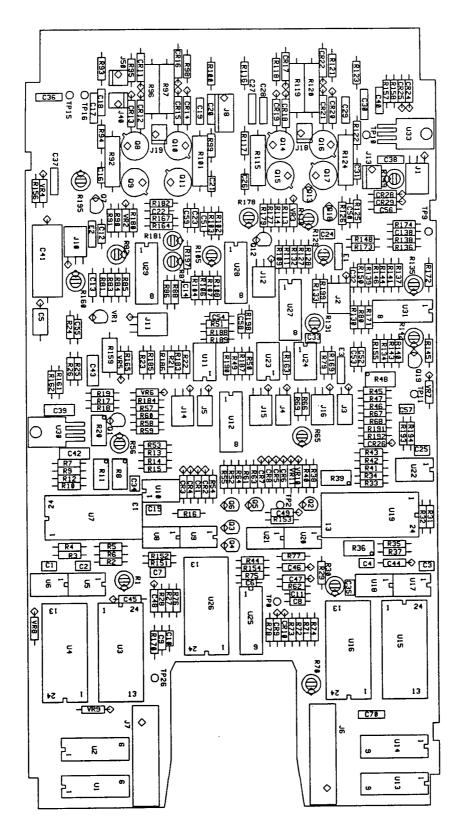






Figure 8-24. Qualifying Symbols

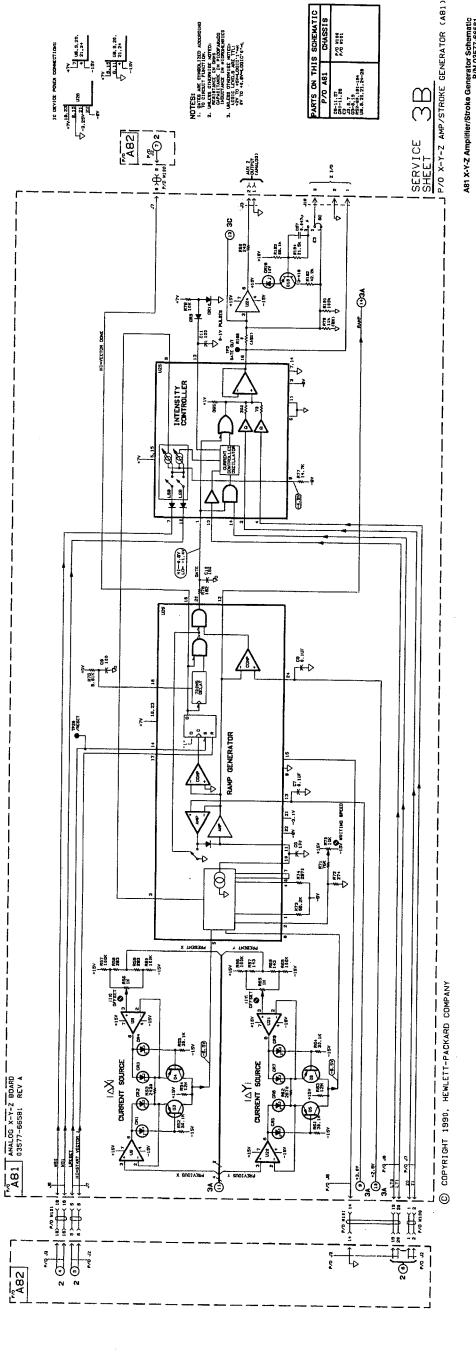



| Ref<br>Desig | Grid<br>Loc | Ref<br>Desig | Grid<br>Loc |
|--------------|-------------|--------------|-------------|
| C1           | B-4         | R8           | J-4         |
| C2           | B-3         | R9           | K-4         |
| C3           | C-4         | R10          | K-3         |
| C4           | C-2         | R11          | K-3         |
| C5           | G-3         | R12          | K-3         |
| C6           | E-4         | R13          | K-4         |
| <b>C7</b>    | E-4         | RP1          | C-4         |
| C8           | F-3         | RP2          | D-4         |
| C9           | E-2         | TP1          | G-2         |
| C10          | F-4         | TP2          | G-2         |
| C11          | F-2         | TP3          | H-2         |
| C12<br>C13   | G-2<br>H-3  | TP4<br>TP5   | G-3<br>H-3  |
| C14          | H-4         | U1           | B-4         |
| C15          | H-3         | U2           | C-4         |
| C16          | 1-4         | U3           | Č-3         |
| C17          | H-2         | U4           | C-3         |
| C18          | 1-2         | U5           | D-4         |
| C19          | J-4         | U6           | D-3         |
| C20          | J-4         | U7           | D-3         |
| C21          | K-3         | U8           | D-2         |
| C22          | K-3         | U9<br>U10    | E-4<br>E-3  |
| C23<br>C24   | K-3<br>B-3  | U11          | E-3<br>E-2  |
| CR1          | K-3         | U12          | F-4         |
| CR2          | H-4         | U13          | F-3         |
| CR3          | B-4         | U14          | H-4         |
| E1           | B-4         | U15          | H-3         |
| J1           | C-2         | U16          | F-2         |
| J2           | K-2         | U17          | 1-4         |
| J3           | K-2         | U18          | I-3         |
| J4           | B-2         | U19          | I-2         |
| J5           | C-2         | U20          | I-2         |
| J6<br>L1     | B-2<br>B-4  | U21<br>U22   | J-4<br>J-3  |
| Q1           | 6-4<br>K-4  | U22          | J-3<br>J-3  |
| Q2           | K-3         | U24          | J-2         |
| R2           | B-4         | U25          | J-2         |
| R3           | F-4         | U26          | K-2         |
| R4           | F-2         | U27          | 1-3         |
| R5           | F-2         | U28          | B-3         |





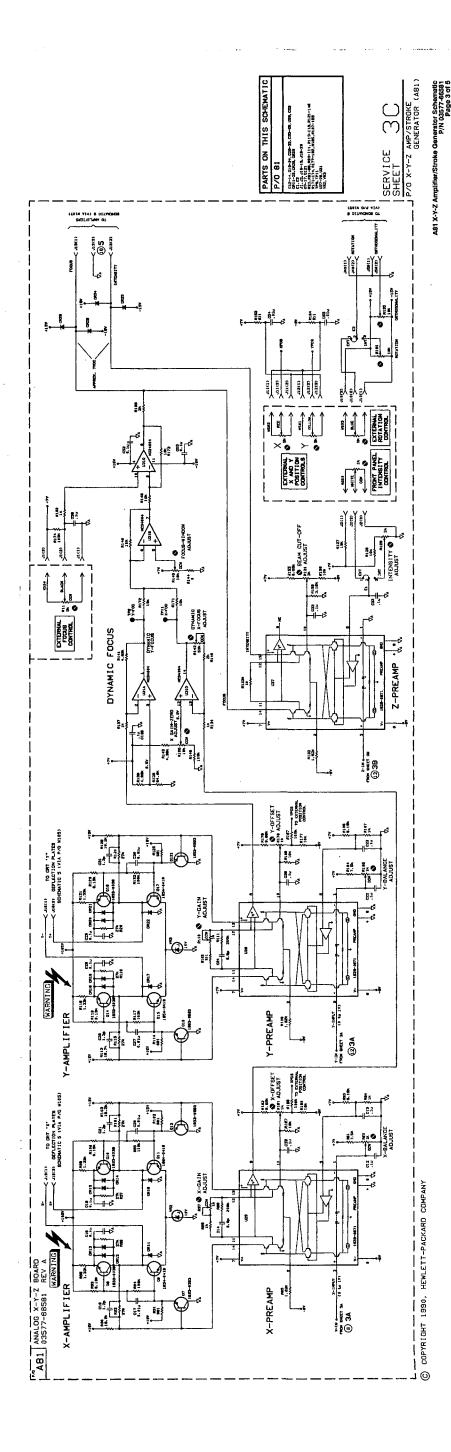

A82 Vector Processor Schematic P/N 03577-66582 Page 2 of 3

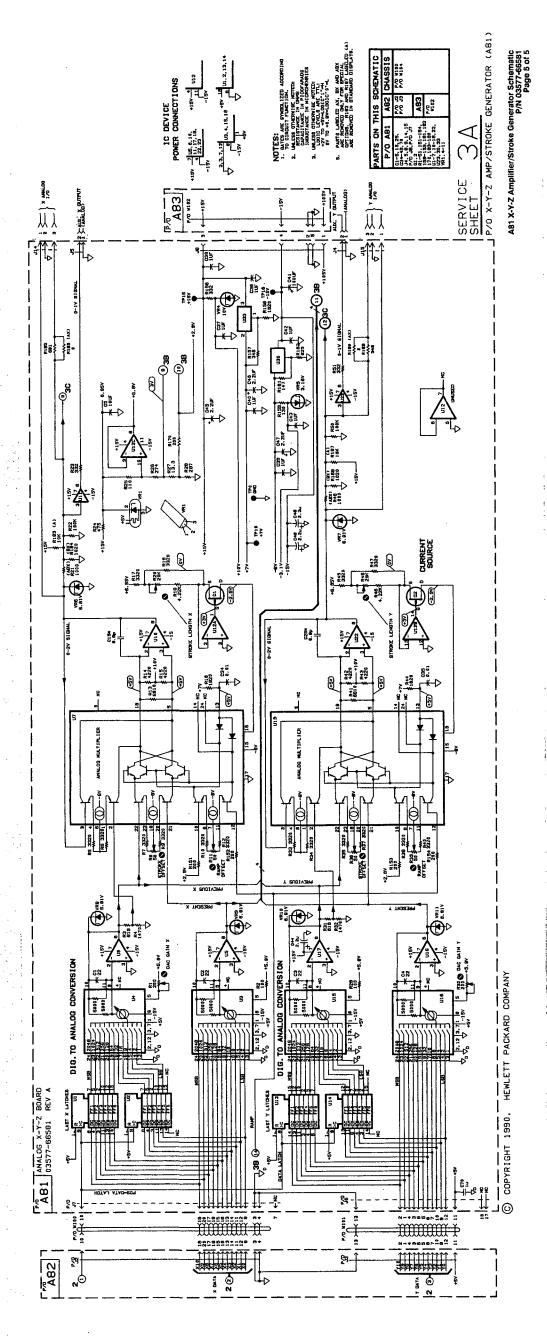



ij.

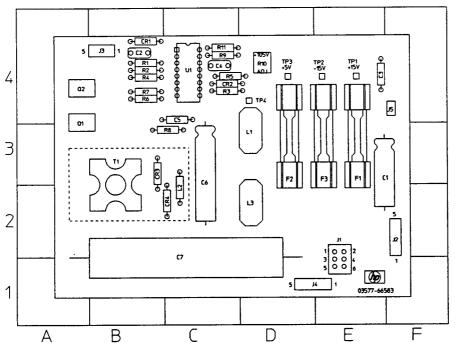
| Ref   | Grid  | Ref   | Grid | Ref        | Grid | Ref   | Grid | Ref   | Grid | Ref   | Grid | Ref   | Grid |
|-------|-------|-------|------|------------|------|-------|------|-------|------|-------|------|-------|------|
| Desig | Loc   | Desig | Loc  | Desig -    | Loc  | Desig | Loc  | Desig | Loc  | Desig | Loc  | Desig | Loc  |
| C1    | l-1   | C55   | E-2  | J20        | H-3  | R31   | G-6  | R83   | D-2  | R137  | D-6  | R191  | F-6  |
| C2    | J-2   | C56   | C-6  | J21        | I-3  | R32   | G-6  | R84   | D-2  | R138  | E-6  | R192  | F-6  |
| C3    | H-6   | C57   | F-6  | J22        | C-2  | R33   | G-6  | R85   | D-2  | R139  | D-6  | R193  | F-6  |
| C4    | H-6   | C58   | E-4  | Q1         | F-2  | R34   | G-6  | R86   | D-3  | R140  | E-6  | R194  | F-6  |
| C5    | E-1   | C59   | C-3  | <b>Q2</b>  | G-5  | R35   | H-6  | R87   | D-3  | R141  | D-6  | R195  | C-2  |
| C6    | H-4   | CR1   | G-3  | Q3         | G-4  | R36   | H-5  | R88   | D-3  | R142  | E-6  | TP2   | G-4  |
| C7    | H-3   | CR2   | G-3  | Q4         | H-4  | R37   | H-6  | R90   | C-2  | R143  | E-6  | TP9   | D-6  |
| C8    | 1-4   | CR3   | G-3  | <b>Q</b> 5 | G-4  | R38   | G-5  | R91   | C-2  | R144  | D-6  | TP10  | B-6  |
| C9    | I-3   | CR4   | G-3  | Q6         | G-4  | R39   | G-5  | R92   | B-2  | R145  | D-6  | TP11  | F-6  |
| C10   | I-3   | CR5   | G-4  | <b>Q7</b>  | C-2  | R40   | G-5  | R93   | A-2  | R146  | D-6  | U1    | K-1  |
| C11   | 1-4   | CR6   | G-4  | Q8         | C-2  | R41   | G-6  | R94   | B-2  | R147  | D-6  | U2    | K-1  |
| C12   | D-2   | CR7   | G-4  | <b>Q</b> 9 | C-3  | R42   | G-6  | R95   | A-2  | R148  | D-6  | U3    | I-2  |
| C13   | D-2   | CR8   | G-4  | Q10        | C-3  | R43   | G-6  | R96   | A-3  | R149  | C-6  | U4    | J-2  |
| C14   | D-3   | CR9   | I-4  | Q11        | C-3  | R44   | H-4  | R97   | A-3  | R150  | D-5  | U5    | H-2  |
| C16   | C-2   | CR10  | 1-4  | Q12        | D-4  | R45   | F-6  | R98   | A-3  | R151  | H-3  | U6    | H-1  |
| C17   | B-2   | CR11  | B-2  | Q13        | C-5  | R46   | F-6  | R99   | B-3  | R152  | H-3  | U7    | H-1  |
| C18   | B-2   | CR12  | B-2  | Q14        | C-4  | R47   | F-6  | R100  | A-3  | R153  | G-5  | U8    | H-3  |
| C19   | B-3   | CR13  | B-2  | Q15        | C-4  | R48   | F-6  | R101  | B-3  | R154  | H-4  | U9    | H-3  |
| C20   | B-3   | CR14  | B-3  | Q16        | C-5  | R49   | E-4  | R102  | C-4  | R155  | E-6  | U10   | G-3  |
| C21   | C-3   | CR15  | B-3  | Q17        | C-5  | R50   | E-4  | R103  | C-3  | R156  | C-1  | U11   | F-3  |
| C22   | C-3   | CR16  | B-3  | Q18        | C-5  | R51   | E-4  | R104  | D-3  | R157  | B-6  | U12   | F-4  |
| C23   | C-3   | CR17  | B-4  | Q19        | F-6  | R52   | G-4  | R105  | D-3  | R158  | B-6  | U13   | K-6  |
| C24   | D-5   | CR18  | B-4  | R1         | H-2  | R53   | G-3  | R106  | D-3  | R159  | E-2  | U14   | J-6  |
| C26   | C-4   | CR19  | B-4  | R2         | H-2  | R54   | G-3  | R107  | D-3  | R160  | D-2  | U15   | I-6  |
| C27   | B-4 · | CR20  | B-5  | R3         | H-1  | R55   | G-4  | R108  | D-4  | R161  | E-1  | U16   | J-6  |
| C28   | B-4   | CR21  | B-5  | R4         | G-1  | R56   | F-2  | R109  | D-4  | R162  | E-1  | U17   | H-6  |
| C29   | B-5   | CR22  | B-5  | R5         | H-2  | R57   | F-3  | R110  | D-5  | R163  | E-4  | U18   | H-6  |
| C30   | B-6   | CR23  | D-6  | R6         | H-2  | R58   | F-3  | R111  | D-4  | R164  | D-3  | U19   | G-6  |
| C31   | C-5   | CR24  | B-6  | R7         | G-2  | R59   | F-3  | R113  | C-4  | R165  | E-2  | U20   | H-5  |
| C32   | D-5   | CR25  | B-6  | R8         | G-2  | R60   | F-3  | R114  | C-4  | R167  | D-3  | U21   | H-4  |
| C33   | D-5   | CR26  | G-6  | R9         | G-2  | R61   | G-4  | R115  | B-4  | R169  | E-5  | U22   | G-6  |
| C34   | G-2   | E1    | D-5  | R10        | G-2  | R62   | H-5  | R116  | A-4  | R170  | I-3  | U23   | F-4  |
| C35   | H-5   | E2    | E-1  | R11        | G-1  | R63   | G-4  | R117  | B-4  | R171  | E-6  | U24   | E-5  |
| C36   | B-1   | E3    | E-5  | R12        | G-2  | R64   | G-4  | R118  | A-4  | R172  | D-6  | U25   | 1-4  |
| C37   | C-1   | J1    | C-6  | R13        | G-3  | R65   | G-5  | R119  | A-5  | R173  | D-5  | U26   | I-4  |
| C38   | C-6   | J2    | D-5  | R14        | G-3  | R66   | F-5  | R120  | A-5  | R174  | D-5  | U27   | D-4  |
| C39   | F-1   | J3    | F-5  | R15        | G-3  | R67   | F-6  | R121  | A-5  | R175  | C-6  | U28   | D-4  |
| C40   | B-6   | J4    | F-4  | R16        | G-3  | R68   | F-6  | R122  | B-5  | R176  | C-6  | U29   | D-2  |
| C41   | D-1   | J5    | F-3  | R17        | F-2  | R69   | F-5  | R123  | A-5  | R177  | C-4  | U30   | F-2  |
| C42   | G-2   | J6    | K-5  | R18        | F-2  | R70   | J-5  | R124  | B-5  | R178  | D-4  | U31   | E-6  |
| C43   | E-2   | J7    | J-2  | R19        | F-2  | R71   | I-5  | R125  | C-5  | R179  | C-4  | U33   | C-6  |
| C44   | H-6   | J8    | B-4  | R20        | F-2  | R72   | I-5  | R126  | C-5  | R180  | C-2  | VR1   | E-2  |
| C45   | 1-2   | J9    | B-2  | R21        | E-3  | R73   | 1-5  | R127  | D-5  | R181  | D-3  | VR2   | C-2  |
| C46   | H-5   | J10   | D-2  | R22        | E-3  | R74   | 1-5  | R128  | D-5  | R182  | C-3  | VR3   | C-5  |
| C47   | H-5   | J11   | E-2  | R23        | E-3  | R75   | H-4  | R129  | D-5  | R183  | E-3  | VR4   | C-1  |
| C48   | H-2   | J12   | D-4  | R24        | E-2  | R76   | H-3  | R130  | E-5  | R184  | F-3  | VR5   | F-2  |
| C49   | H-6   | J13   | C-6  | R25        | E-2  | R77   | H-5  | R131  | E-5  | R185  | E-3  | VR6   | F-3  |
| C50   | C-5   | J14   | F-3  | R26        | E-2  | R78   | 1-4  | R132  | D-5  | R186  | E-3  | VR7   | F-6  |
| C51   | C-3   | J15   | F-4  | R27        | H-3  | R79   | E-5  | R133  | D-5  | R187  | E-4  | VR8   | H-2  |

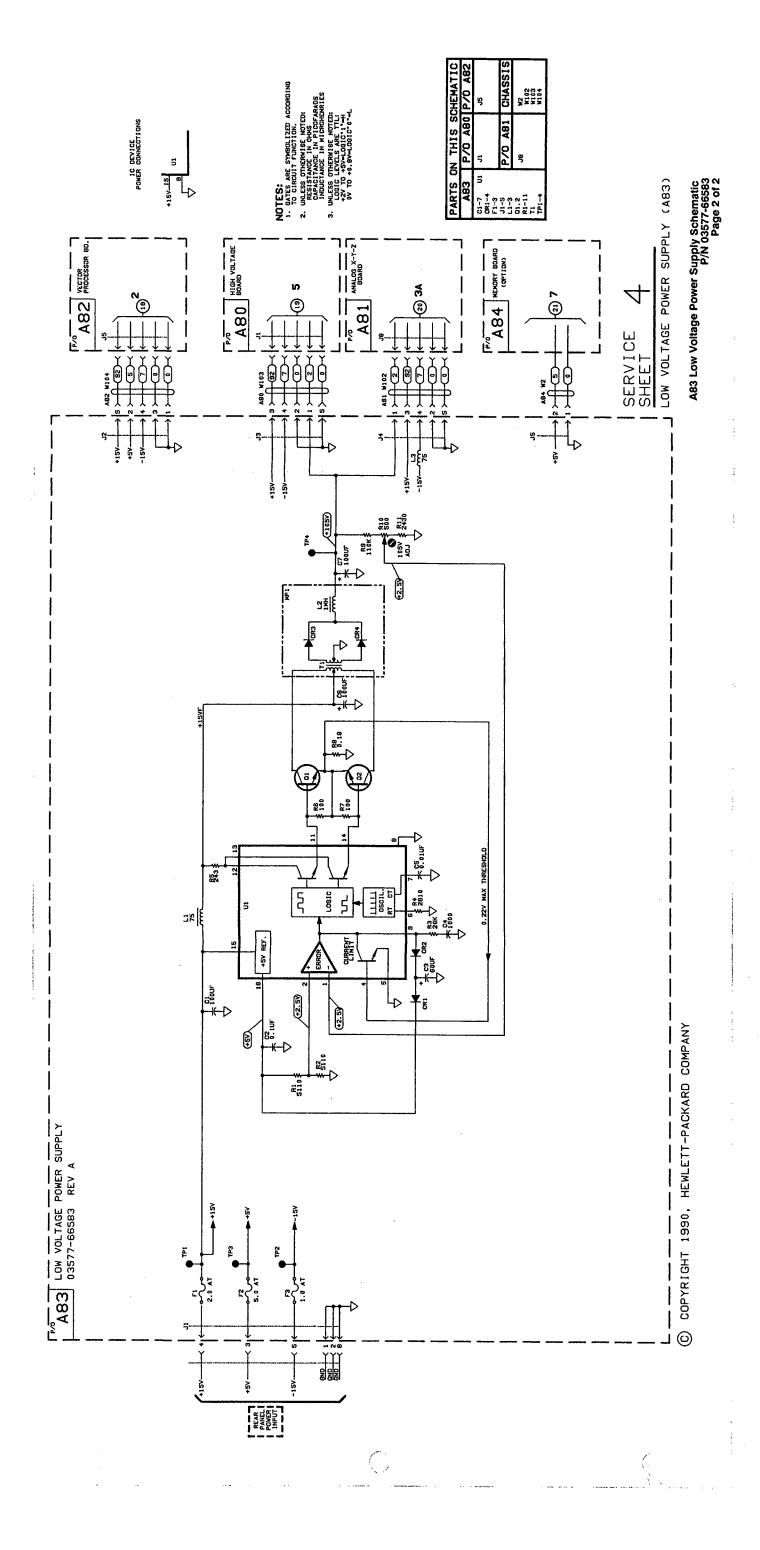


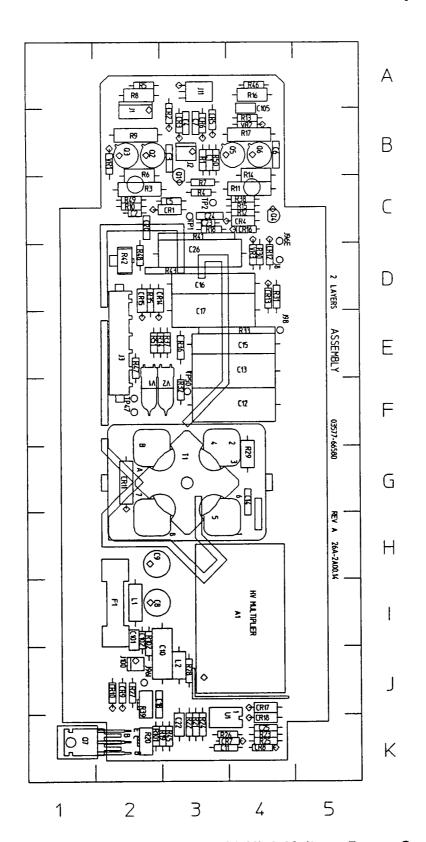

A81 X-Y-Z Amplifier/Stroke Generator Component Locator
P/N 03577-66581 Rev A
Page 2 of 5




Ċ

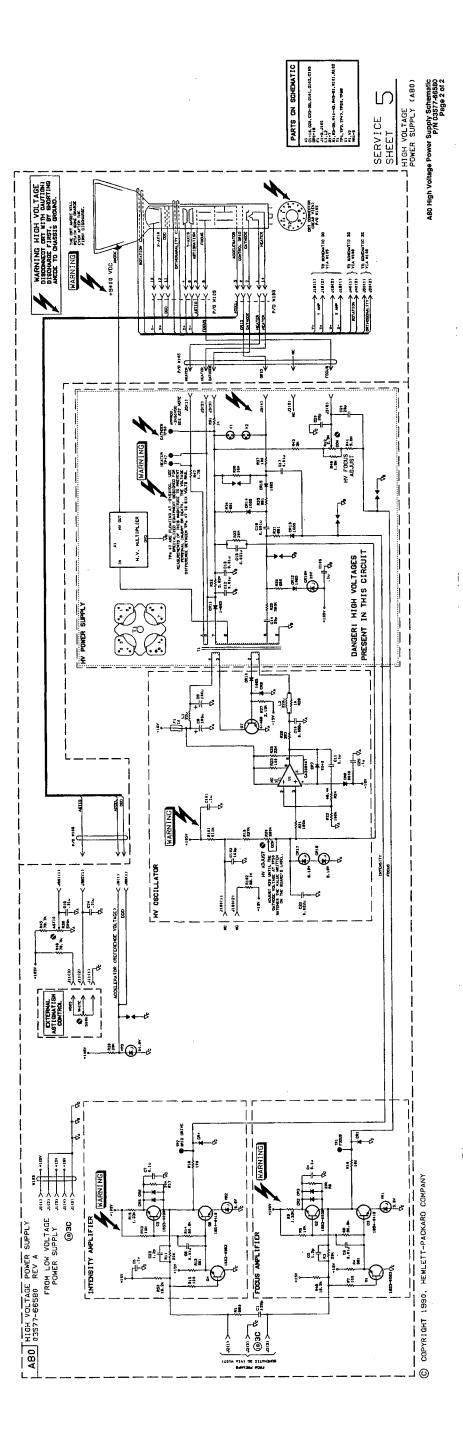

Q

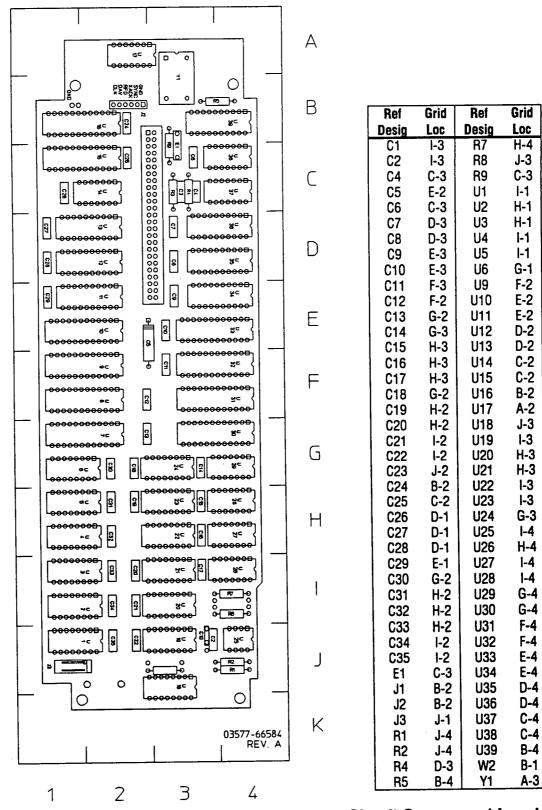

F.\* A82



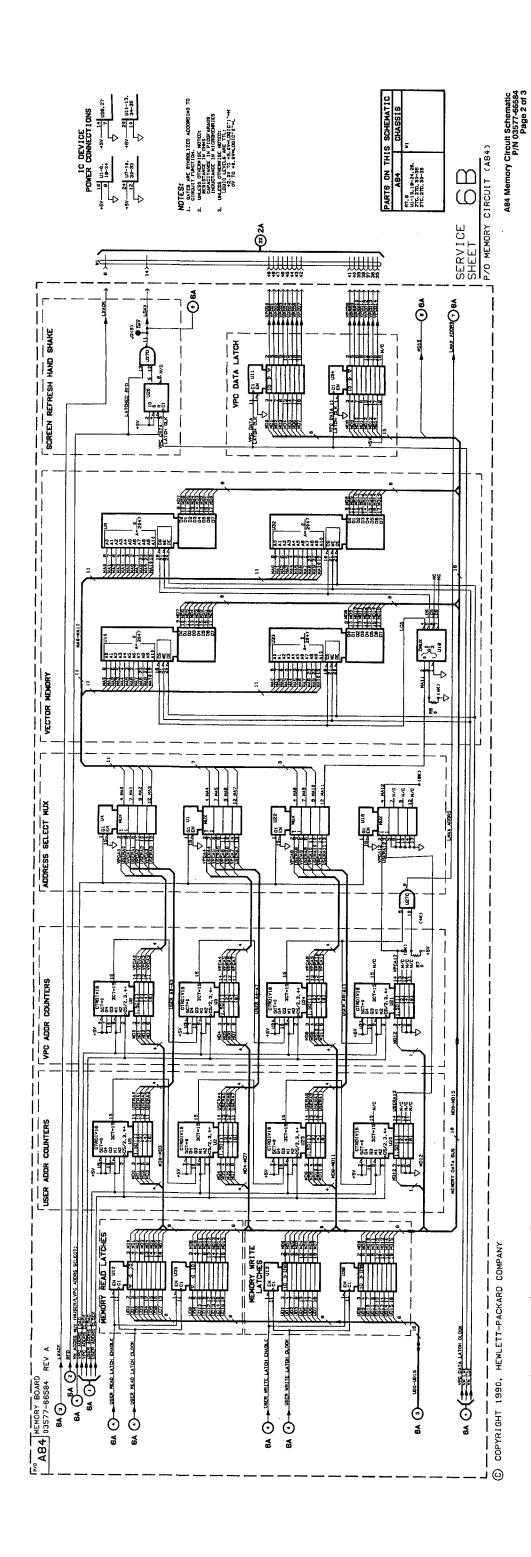


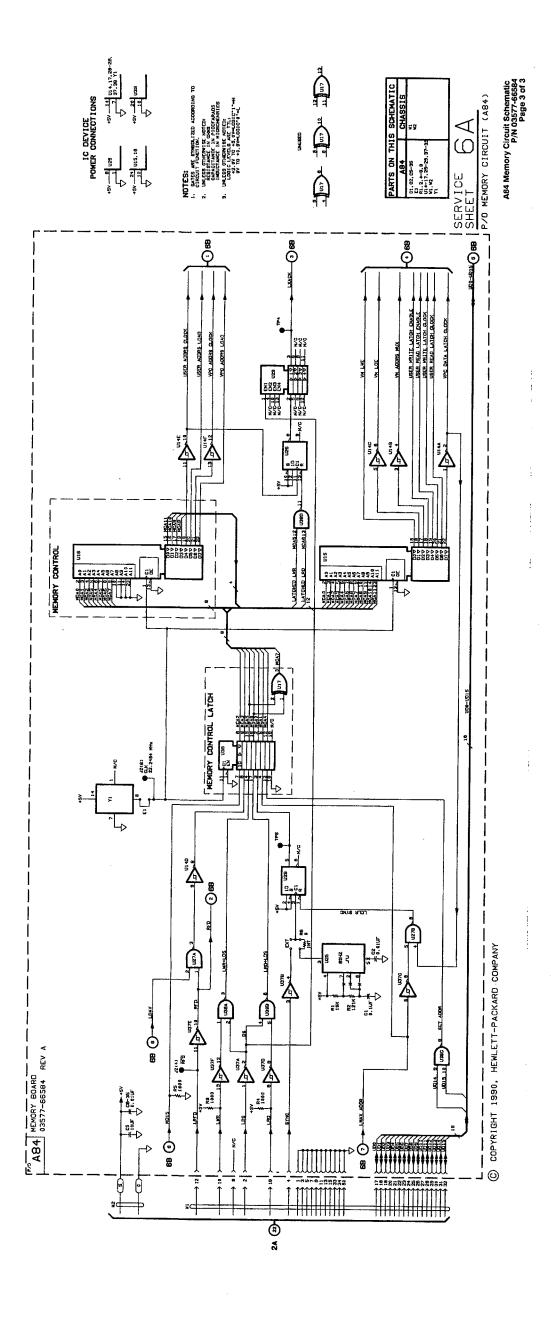

|   | Ref   | Grid | Ref   | Grid |
|---|-------|------|-------|------|
|   | Desig | Loc  | Desig | Loc  |
| Ì | C1    | E-3  | L3    | D-2  |
|   | C2    | B-4  | Q1    | A-3  |
|   | C3    | E-4  | Q2    | A-4  |
|   | C4    | C-4  | R1    | B-4  |
|   | C5    | C-3  | R2    | B-4  |
|   | C6    | C-3  | R3    | C-4  |
|   | C7    | C-2  | R4    | B-4  |
|   | CR1   | B-4  | R5    | C-4  |
|   | CR2   | C-4  | R6    | B-4  |
|   | CR3   | B-2  | R7    | B-4  |
|   | CR4   | B-2  | R8    | B-3  |
|   | F1    | E-2  | R9    | C-4  |
|   | F2    | D-2  | R10   | D-4  |
|   | F3    | E-2  | R11   | C-4  |
|   | J1    | E-2  | T1    | B-3  |
|   | J2    | E-2  | TP1   | E-4  |
|   | J3    | B-4  | TP2   | E-4  |
|   | J4    | D-1  | TP3   | D-4  |
|   | J5    | F-4  | TP4   | D-4  |
|   | L1    | D-3  | U1    | C-4  |
|   | L2    | C-3  |       |      |
|   |       |      |       |      |
|   |       |      |       |      |







| Ref        | Grid       | Ref        | Grid       |
|------------|------------|------------|------------|
| Desig      | Loc        | Desig      | Loc        |
| A1         | J-3        | R5         | A-2        |
| C1         | B-3        | R6         | C-2        |
| C2         | C-2        | R7         | C-3        |
| C3         | B-3        | R8         | A-2        |
| C4<br>C5   | B-3<br>C-3 | R9<br>R10  | B-2<br>C-2 |
| C6         | 0-3<br>B-4 | R11        | C-4        |
| C7         | B-3        | R12        | C-4        |
| C8         | 1-2        | R13        | B-4        |
| C9         | H-2        | R14        | C-4        |
| C10        | 1-2        | R15        | C-4        |
| C11        | K-3        | R16        | A-4        |
| C12        | F-4        | R17        | B-4        |
| C13<br>C14 | E-4<br>G-4 | R18        | C-3<br>K-2 |
| C15        | G-4<br>E-4 | R19<br>R20 | K-2        |
| C16        | D-3        | R21        | J-3        |
| C17        | E-4        | R22        | J-3        |
| C18        | J-2        | R23        | K-4        |
| C19        | J-2        | R24        | J-3        |
| C20        | C-2        | R25        | K-4        |
| C21        | C-2        | R26        | K-3        |
| C22        | J-3        | R27        | J-2        |
| C23<br>C24 | C-4<br>C-3 | R28<br>R29 | J-3<br>F-4 |
| C25        | K-4        | R30        | D-4        |
| C26        | D-4        | R31        | D-4        |
| CR1        | B-2        | R32        | F-2        |
| CR2        | B-3        | R33        | E-4        |
| CR3        | B-3        | R34        | E-2        |
| CR4        | B-4        | R35        | D-2        |
| CR5        | B-3        | R36        | E-2<br>D-2 |
| CR6<br>CR7 | B-3<br>K-3 | R37        | U-2<br>C-4 |
| CR8        | K-4        | R39        | J-2        |
| CR9        | J-2        | R40        | J-2        |
| CR10       | J-2        | R41        | C-3        |
| CR11       | H-2        | R42        | D-2        |
| CR12       | D-4        | R43        | D-2        |
| CR13       | D-4        | R45        | K-3        |
| CR14       | E-2        | R46        | A-4        |
| CR15       | E-2        | R47        | F-2        |


A80 High Voltage Power Supply Component Locator P/N 03577-66580 Rev A Page 1 of 2





A84 Memory Circuit Component Locator P/N 03577-66584 Rev A Page 1 of 3





## **Hewlett-Packard Sales and Service Offices**

To obtain Servicing information or to order replacement parts, contact the nearest Hewlett-Packard Sales and Service Office listed in HP Catalog, or contact the nearest regional office listed below:

#### In the United States

California
P.O. Box 4230
1421 South Manhattan Avenue
Fullerton 92631

Georgia
P.O. Box 105005
2000 South Park Place
Atlanta 30339

Illinois
5201 Tollview Drive
Rolling Meadows 60008

New Jersey
W. 120 Century Road
Paramus 07652

## In Canada

Hewlett-Packard (Canada) Ltd. 17500 South Service Road Trans-Canada Highway Kirkland, Quebec H9J 2M5

In France

Hewlett-Packard France F-91947 Les Ulis Cedex Orsay In German Federal Republic

Hewlett-Packard GmbH Vertriebszentrale Frankfurt Berner Strasse 117 Postfach 560 140 D-6000 Frankfurt 56

In Great Britain

Hewlett-Packard Ltd. King Street Lane Winnersh, Wokingham Berkshire RG11 5AR

In Other European Countries

Switzerland
Hewlett-Packard (Schweiz) AG
7, rue du Bois-du-Lan
Case Postale 365
CH-1217 Meyrin

In All Other Locations

Hewlett-Packard Inter-Americas 3155 Porter Drive Palo Alto, California 94304



Printed in U.S.A.

## S E R V I C E N O T E

SUPERSEDES None

3563A Control Systems Analyzer

Serial Numbers:

2927A00100 to 3001A00276

Modification prevents instrument lock-up when using synthesis

table.

Performed By:

HP-Qualified Personnel

Parts Required:

HP P/N

Description

03563-84403

ROM Upgrade Kit

"Program ROM Dead" is displayed on the screen if more zeros than poles are entered in a synthesis table.

- 1. Press the line switch on.
- 2. Determine the firmware revision installed in the instrument by pressing the following keys:

<SPCL FCTN>
[SERVIC TEST]
[TEST RESULT]
[FAULT LOG]

**DATE 01 April 1990** 

#### **ADMINISTRATIVE INFORMATION**

| SERVICE NOTE CLASS       | SIFICATION:                                           |                                                                     |  |  |
|--------------------------|-------------------------------------------------------|---------------------------------------------------------------------|--|--|
| MODIFICATION RECOMMENDED |                                                       |                                                                     |  |  |
| ACTION<br>CATEGORY:      | ☐ IMMEDIATELY ☐ ON SPECIFIED FAILURE ■ AGREEABLE TIME | STANDARDS:<br>LABOR: 0.5 Hours                                      |  |  |
| LOCATION<br>CATEGORY:    | ☐ CUSTOMER INSTALLABLE☐ ON-SITE☐ HP LOCATION          | SERVICE ☐ RETURN USED ☐ RETURN PARTS: ☐ SCRAP ☐ SEE TEXT ☐ SEE TEXT |  |  |
| AVAILABILITY:            | PRODUCT'S SUPPORT LIFE                                | RESPONSIBLE ENTITY: A100 UNTIL: 01 April 1992                       |  |  |
| AUTHOR: CMG              | ENTITY: A100                                          | ADDITIONAL INFORMATION:                                             |  |  |

© 1990 HEWLETT-PACKARD COMPANY PRINTED IN U.S.A.



Page 2

The firmware (software) revision code is listed under the "Fault Log" title.

3. Install ROM update kit 03563-84403 if the firmware revision code is <2945.

#### E S I E N E R

SUPERSEDES None

## 3563A Control Systems Analyzer

0000A00000/3004A00308 Serial Numbers:

**Duplicate Service Note: 3562A-12** 

## Modification extends battery life

#### Situation:

The life of the battery on the A2 board can be extended by a modification to the battery backup circuit. The modification reduces drain on the battery when the instrument power is off.

#### Solution/Action:

Use the procedure below to tie two unused NAND gate inputs to ground and to tie a third NAND gate input to ground through a 100 kohm resistor.

### Parts Required:

HP P/N Description

14 pin DIP socket 1200-0638

74HC10 CMOS NAND gate 1820-2923 100 kohm, 1% resistor 0757-0465

Jumper wire

Continued

**DATE 01 June 1990** 

#### ADMINISTRATIVE INFORMATION

| SERVICE NOTE CLASSIFICATION: |                                                       |                                                                       |  |  |
|------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------|--|--|
| MODIFICATION RECOMMENDED     |                                                       |                                                                       |  |  |
| ACTION<br>CATEGORY:          | ☐ IMMEDIATELY ☐ ON SPECIFIED FAILURE ■ AGREEABLE TIME | STANDARDS:<br>LABOR:                                                  |  |  |
| LOCATION<br>CATEGORY:        | ☐ CUSTOMER INSTALLABLE☐ ON-SITE☐ HP LOCATION          | SERVICE   RETURN   USED   RETURN   PARTS: SCRAP   SEE TEXT   SEE TEXT |  |  |
| AVAILABILITY:                | PRODUCT'S SUPPORT LIFE                                | RESPONSIBLE ENTITY: A100 UNTIL: 01 June 1991                          |  |  |
| AUTHOR: RM                   | ENTITY: A100                                          | ADDITIONAL INFORMATION:                                               |  |  |

© 1990 HEWLETT-PACKARD COMPANY PRINTED IN U.S.A.



1 of 2

#### Procedure:

## WARNING

The following procedure requires the instrument's top cover be removed. Energy available at many points can, if contacted, result in serious personal injury.

- 1. Press the line switch off and remove the instrument's power cord.
- 2. Remove the top cover.
- 3. Remove the sheet metal shield covering the digital boards (A1-A9).

#### **CAUTION**

The following steps must be performed at a static protected site to prevent static discharge damage during the handling of the PC assembly.

- 4. Remove the A2 board.
- 5. Remove A2U408.
- 6. Solder the 14 pin DIP socket into place at A2U408.
- 7. Solder the jumper wire on the circuit side of the A2 board to connect pins 2 and 13 of A2U408 to pin 1 (ground) of A2U408.
- 8. On the circuit side of the A2 board, connect the 100 kohm resistor between pins 9 and 7 (ground) of A2U408.
- 9. Insert the NAND gate (1820-2923) into the socket at A2U408.
- 10. Replace the A2 board, the sheet metal shield, and the top cover.

## S E R V I C E N O T E

SUPERSEDES: None

## **HP 3563A Control Systems Analyzer**

Serial Numbers: 0000A00000/3004A01137

New 03562-61608 cable may cause A1 assembly short.

**Duplicate service notes: 3562A-13** 

Parts Required:

HP Part Number Description Qty

0890-0060 Teflon Tubing 6mm

#### Situation:

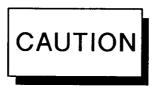
The 03562-61608 cable is now being made using a SMB connector with a square body. The corners can touch the leads of capacitor C420 and resistor R508 on the 03562-66501 (A1) PC assembly causing a short.

When replacing an older cable (one with a round connector body) with the new cable, tubing should be placed on the leads of C420 and R508 that are towards J10 (one piece per component). A1 assemblies with a date code of 3508 or greater already have this tubing in place.

**DATE: May 1995** 

### **ADMINISTRATIVE INFORMATION**

| SERVICE NOTE CLASSIFICA | INFORMATI | ON ONLY                 |
|-------------------------|-----------|-------------------------|
| AUTHOR:                 | ENTITY:   | ADDITIONAL INFORMATION: |
| DLC                     | A100      |                         |
|                         |           |                         |
|                         |           |                         |


© 1995 HEWLETT-PACKARD COMPANY PRINTED IN U.S.A.



Page 2 Service Note 3563A-03

## Solution/Action:

The following steps assume that the 03562-66501 (A1) PC assembly has already been removed for cable replacement.



The following steps must be performed at a static protected workstation to prevent static discharge to the PC assembly.

- 1. Unsolder the leads of C420 and R508 that are adjacent to J10.
- 2. Slip a 3mm piece of tubing over each component lead.
- 3. Resolder the leads of C420 and R508.

The 03562-66501 (A1) assembly is now ready for installation and use with the new 03562-61608 cable.

# S E R V I C E N O T E

SUPERSEDES: None

3563A Control Systems Analyzer

**Serial Numbers:** 0000A00000 / 9999Z99999

Discharged battery causes power up problems

**Duplicate Service Note: 3562A-15** 

To Be Performed By: HP-Qualified Personnel

Parts Required:

HP P/N

**Description** 

1420-0277

Lithium Battery

1400-0249

Tie-wrap

#### Situation:

Corrupt nonvolatile RAM data resulting from a normal discharge of the back-up battery on the A2 CPU/HPIB board may cause an instrument to display the error message "BAD AUTO SEQUENCE TABLE" during power up. In some cases the instrument may to fail to complete its power up tests resulting in a blank display and a 1F(hex) error code on the A2 board fault LED's.

Continued

**DATE: May 1996** 

## ADMINISTRATIVE INFORMATION


| SERVICE NOTE CLASSIFICA | TION:     |                         |
|-------------------------|-----------|-------------------------|
|                         | INFORMATI | ON ONLY                 |
| AUTHOR:                 | ENTITY:   | ADDITIONAL INFORMATION: |
| DLC                     | A100      |                         |
|                         | ·         |                         |
| ,                       |           |                         |

© 1996 HEWLETT-PACKARD COMPANY PRINTED IN U.S.A.



#### Solution/Action:

Use the procedure below to replace the battery (if necessary) and clear the nonvolatile RAM.



The following procedure requires the instrument's top cover to be removed. Energy available at many points can, if contacted, result in serious personal injury.

- 1. Press the line switch off and remove the instrument's power cord.
- 2. Remove the top cover.
- 3. Remove the sheet metal shield covering the digital boards.



The following steps must be performed at a static protected site to prevent static discharge damage during the handling of the PC assembly.

- 4. Remove the A2 board.
- 5. Use a volt meter to measure the voltage of the back-up battery installed on the A2 board. Replace the battery if the measured voltage does not compare favorably with the voltage printed on the battery label.
- 6. Install the A2 board.
- 7. Verify that the instrument will power up correctly. Some instruments may still not power up. In this case place A2 J21 in the test position and turn the power on again. While the power is still on place A2 J21 back in the normal position and turn the power off. 8. Replace the sheet metal shield, and the top cover.
- 9. This completes the procedure.



Index# How Sent Date Sent Div#/Abr 00059 H/C 06/26/89 A100
Prod# Type Doc H/W S/W Sector 3563A PSP H MEA
Desc.2 CHANNEL DYNAMIC SIGNAL ANALY

PRODUCT SUPPORT DIVISION • 100 Mayfield Avenue, Mountain View, California 94043, Telephone (415) 968-5600

FROM: Paul Gearhart

DATE: June 27, 1989

TO: Support Plan Distribution

SUBJECT: HP3563A

Product

Support Plan

CC: Claudine Govier

Lake Stevens Inst. Div.

A100

#### HP3563A

## 2 CHANNEL DYNAMIC SIGNAL ANALYZER

#### PRODUCT SUPPORT PLAN

Here is the Support Plan for the HP3563A 2 Channel, 100KHz Dynamic Signal Analyzer. The HP3563A has all of the features of the HP3562A plus it has Digital input and output, Z-domain curve fit and synthesis, and step, pulse, ramp, and arbitrary source types.

This product is scheduled to be first available on the September, 1989 CPL.

Please see that the information in this Support plan is distributed to all people within your control that may need to take action.

Your help in communicating the information is vital to the successful implementation of support.

Regards

Paul Gearhart

PrSD Technical Marketing



3563A

Product Support Plan

Lake Stevens Instrument Division

A100

June 23, 1989

#### 1.0 PRODUCT INFORMATION

## 1.01 PRODUCT INTRODUCTION SCHEDULE

Release to sales: July 17, 1989

Manuals available to field:

Getting Started October 16, 1989
Operating Manual October 16, 1989
Programming Reference October 16, 1989
Service Manual October 16, 1989

Product listed on CPL: September 1, 1989

First customer shipment: October 16, 1989

#### 1.1 PRODUCT DESCRIPTION

The HP3563A is a 2-channel, 100 kHz dynamic signal analyzer which offers analog and digital input and output. It can characterize signals and systems in time and frequency domains by performing waveform, spectrum and network analysis. It also contains significant analysis capabilities which help the user extract additional information from measured results.

#### 1.2 PRODUCT FEATURES

The HP 3563A Control Systems Analyzer is a compatible superset of the HP3562A Dynamic Signal Analyzer. To the features of the HP3562A, the HP3563A adds:

- \* Digital input and output
- \* Z-domain curve fit and synthesis
- \* Step, pulse, ramp, and arbitrary source types

#### 1.3 PRODUCT CONFIGURATION

The HP 3563A includes:

16-bit input probe cable (01650-61607): 3 each 16-bit input probe pod (03563-61605): 3 each 8-bit output probe cable (03563-61604): 3 each HP 10347A Pattern Generator Probe Lead set: 3 each Grabber (5959-0288, package of 20): 80 each (4 packages)

Pouch for cables and probes Operating Manual (03563-90000)

Note: The operating manual includes the installation manual (03563-90007)

which includes the instrument's performance tests.

Getting Started (03563-90001)

Programming Reference (03563-90005)

Power Cord

Standard 1-year warranty

#### **OPTIONS:**

- 907 Front Handle Kit (HP P/N 5061-0091)
- 908 Rack Mount Kit (HP P/N 5061-0079)
- 909 Rack Mount and Front Handle Kit (HP P/N 5061-0085)
- 910 Extra Getting Started, Operating and Programming Manuals
- 914 Add Service Manual and Kit
- 915 DOS File Utilities (HP P/N 03563-19400 for 3.5" and HP P/N 03563-19401 for 5.25" disks)
- W30 Provides 3 years of customer return service.

## SOFTWARE ACCESSORIES:

None

#### ACCESSORIES:

HP 10346A 8-Channel TTL Tristate Buffer Pod Termination adapter (HP P/N 01650-63201) Transit case for one HP 3563A (HP P/N 9211-2663).

## 1.4 USE OF OTHER HP PRODUCTS

HP-IB: Implementation of IEEE Std 488-1978 SH1 AH1 T5 TEO L4 LEO SR1 RL1 PPO DC1 DT1 CO

Disc Drives (External): Supports the 91XX, 795X, and 796X families of disc drives.

Plotters: Hewlett-Packard Graphics Language (HP-GL) digital plotters

### 1.5 PRODUCT SPECIFICATIONS

## 1.5.1 PHYSICAL SPECIFICATIONS

#### DIMENSIONS:

Height - 222 mm (8.75 in) Width - 426 mm (16.75 in) Depth - 578 mm (22.75 in)

#### WEIGHT:

27 kg (58 lbs) net 38 kg (84 lbs) shipping

## 1.5.2 ELECTRICAL SPECIFICATIONS

#### Power:

90 to 132 VAC, 48 to 66 Hz 198 to 264VAC, 48 to 66 Hz 450 VA maximum, 275W maximum

#### 1.5.3 MECHANICAL SPECIFICATIONS

The instrument cools by drawing air into its back panel and blowing it out the sides. Air flow must not be restricted in these areas.

#### 1.5.4 ENVIRONMENTAL SPECIFICATIONS

Instrument (Class B2)

Operating Temperature: 0x to 55xC Operating Humidity: <-95% at 40xC Storage Temperature: -40x to +75x Altitude: <-15240 m (50,000 ft)

#### 1.5.5 SAFETY SPECIFICATIONS

The product has been designed to meet the following safety regulations:

UL1244, Second Edition, 7/21/78 with 8/10/84 revisions IEC 348, Second Edition, 1978 CSA 556B, 9/17/73

#### 1.5.6 STANDARDS

The product has been designed to meet the following EMI regulation:

FTZ 526/527 (1979) (West Germany)

#### 1.6 MARKETING DATA

#### 1.6.1 TARGETED MARKET

Environment: The product is intended to be used in laboratory and manufacturing areas.

Application: The HP 3563A is intended to be used by engineers developing and testing next generation servo systems in office automation, aerospace, consumer electronics, communications and industrial companies as well as R&D and educational institutions.

The following table reflects the expected graphic dispersion of sales of the HP 3563A (percentage) based on sales of HP 3562A:

| Sales Region        | Percentage of Sales |
|---------------------|---------------------|
| Neely/ISC           | 21%                 |
| Midwest             | 7%                  |
| Southern            | 7%                  |
| Eastern             | 18%                 |
| U.S Total           | 53%                 |
| United Kingdom      | 3%                  |
| Germany             | 5%                  |
| Other Europe        | 11%                 |
| Europe - Total      |                     |
| Canada              | 1%                  |
| Japan               | 19%                 |
| Other International | 8%                  |
| ICON - Total        | 28%                 |

The HP 3563A is expected to have a product life of 4 years.

## 1.6.2 SHIPMENT SCHEDULE

Current estimates as of June 13, 1989.

CPL date: September 1, 1989

Date of first demo shipments: October 16, 1989

Date of first customer shipments: October 16, 1989

Date of first European/ICON shipments: October 16, 1989

Expected shipment quantities for first year:

| Month           | v.s | Europe | ICON | Total |
|-----------------|-----|--------|------|-------|
| October, 1989   | 22  | 8      | 12   | 42    |
| November, 1989  | 10  | 4      | 6    | 20    |
| December, 1989  | 10  | 4      | 6    | 20    |
| January, 1990   | 12  | 4      | 6    | 22    |
| February, 1990  | 10  | 4      | 5    | 19    |
| March, 1990     | 12  | 4      | 6    | 22    |
| April, 1990     | 11  | 4      | 6    | 21    |
| May, 1990       | 24  | 8      | 12   | 44    |
| June, 1990      | 22  | 8      | 12   | 42    |
| July, 1990      | 22  | 8      | 12   | 42    |
| August, 1990    | 24  | 9      | 13   | 46    |
| September, 1990 | 20  | 7      | 11   | 38    |
| October, 1990   | 21  | 8      | 11   | 40    |

#### 1.7 WARRANTY

The HP 3563A is covered by the standard one year bench repair instrument warranty. No parts or assemblies are excluded.

Option W30 combines factory warranty with field support to provide three (3) years of continuous warranty-like support.

#### 2.0 SUPPORT STRATEGY

## 2.1 SITE PREPARATION REQUIREMENTS

There must be a power outlet for the HP 3563A to plug into.

#### 2.2 INSTALLATION

The HP 3563A automatically runs a calibration routine at power up. Self-tests can be accessed from the self-test menu.

No revisions of the system firmware are planned for the HP 3563A. Should updates be necessary, update kits comprised of replaceable parts will be provided.

#### 2.3 REPAIR METHOD

Repair is to be performed by bench technicians at HP service centers. Repair will be either component level or assembly replacement depending on the assembly failing. Refer to Table A for a list of the assemblies and repair method.

The service kit, HP P/N 03563-84401 is necessary for proper servicing of the HP 3563A. It contains various extender boards and adapters for testing and troubleshooting the instrument. The HP 3563A Service Kit is a superset of the HP 3562A Service Kit. If a HP 3562A Service Kit is available, only the following items need to be added to it:

| (1) Test Board         | HP 03563-66540 |
|------------------------|----------------|
| (1) Capacitive Load    | HP 35660-64401 |
| (3) 16-bit probe pod   | HP 03563-61605 |
| (3) 8-bit probe cables | HP 03563-61604 |
| (1 pkg) Grabbers       | HP 5959-0288   |

Estimated Annualized Failure Rate: 13%

(2,000 hrs/yr)

Estimated Mean Time To Repair: 5.0 hours Estimated Average Repair Cost: \$660

Estimated Average Parts Cost: \$220

## TABLE A Assembly Repair Method

Component Level Repair Assemblies:

Al Digital Source

A2 CPU

A9 FFT

A15 Keyboard

A18 Power Supply

A30 Analog Source

A31 Trigger

A32/34 ADC

A33/35 Input

Display

## Exchange Assemblies:

A4 LO

A5 Digital Filter

A7 FPP

AlO Digital I/O

A38 Memory

## Replace with New Assembly:

A6 Digital Filter Controller

Al4 Mother Board

A20 Digital Connector Board 1

A21 Digital Connector Board 2

A22 HP-IB Connector Board

A40 Test Board

### 2.4 DIAGNOSTIC DESCRIPTION

The HP 3563A has extensive, internal self-tests that are used to verify instrument operation and help the service technician quickly isolate failures.

## 2.5 PERFORMANCE EVALUATION STRATEGY

At introduction of the HP 3563A, the performance test, operational verification, and adjustments are to be done manually or using PRSD's HP 3562A, SCAT2 automatic performance test. Full calibration with certification is done at customer request only. Selected operational verification tests are required as a part of repair as described in the service manual.

#### Calibration (Manual):

Frequency:

1/year

Adjustment Time:

0.5 hours

Performance Test Time (Mature)

10 hours

10.5 hours

Total Calibration Time (Max)

Operational Verification:

1 hour

#### 2.6 PREVENTIVE MAINTENANCE

The screen for the fan needs to be cleaned periodically.

#### 2.7 SPECIAL TOOLS

The A40 Test Board and Common Mode Cable are recommended for the performance tests. The Capacitive Load adapter is recommended to perform the adjustments. Refer to section 3.3 for the list of recommended test equipment.

#### 2.8 SUPPORT SERVICES

The product support life cycle for the HP 3563A is 5 years.

#### 2.9 TECHNICAL SUPPORT REQUIREMENTS

Lake Stevens Instrument Division will maintain responsibility for hardware and software on-line support. The STARS system is to be used to enter both firmware and software (DOS utilities disk) anomalies. No subcription service will be used.

#### 3.0 SUPPORT MATERIALS

#### 3.1 SPECIAL MATERIALS CONSIDERATIONS

None

#### 3.2 PARTS

#### 3.2.1 EXCHANGE ASSEMBLIES

The quantities listed in this section are estimated as of 6/89.

| Description (U.S.) (U.S. | •              | EXCH P/N    | New List | NEP   | AFR* |
|--------------------------|----------------|-------------|----------|-------|------|
| A4 LO                    | 03562-66504    | 03562-69504 | \$625    | \$400 | 0.7% |
| A5 DGTL FL               | TR 03562-66505 | 03562-69505 | \$1700   | \$700 | 0.7% |
| A7 FFT                   | 03562-66507    | 03562-69507 | \$1150   | \$500 | 0.4% |
| A10 DGTL I/              | 0 03563-66510  | 03563-69510 | STBD     | STBD  | 0.3% |
| A38 MEMORY               | 03563-66538    | 03563-69538 | \$TBD    | \$TBD | 0.4% |

#### 3.2.2 NON-EXCHANGE ASSEMBLIES

The quantities listed in this section are estimated as of 6/89.

| Description   | P/N         | New List | AFR* |
|---------------|-------------|----------|------|
| A1 DGTL SCE   | 03562-66501 | \$575    | 0.2% |
| A2 CPU        | 03563-66502 | \$825    | 0.7% |
| A6 DFLTR CONT | 03562-66506 | \$430    | 0.2% |
| A9 FFT        | 03562-66509 | \$1150   | 0.2% |
| A14 MOTHERBD  | 03563-66514 | \$TBD    | 0.1% |
| A15 KEYBD     | 03562-66515 | \$650    | 0.7% |
| A18 PWR SPLY  | 03562-66518 | \$1400   | 1.2% |
| A20 CONN BRD1 | 03563-66520 | \$TBD    | 0.1% |
| A21 CONN BRD2 | 03563-66521 | \$TBD    | 0.1% |
| A22 HP-IB     | 03562-66522 | \$240    | 0.1% |
| A30 ANLG SCE  | 03562-66530 | \$675    | 0.1% |
| A31 Trigger   | 03562-66531 | \$525    | 0.4% |
| A32/34 ADC    | 03562-66532 | \$875    | 0.5% |
| A33/35 INPUT  | 03562-66533 | \$850    | 0.9% |
| DISPLAY       | 03562-60100 | \$4100   | 1.9% |
| A40 TEST BRD  | 03563-66540 | \$TBD    | 0.1% |

<sup>\*</sup>Based on HP 3562A failure rates.

## 3.2.3 FIELD-REPLACEABLE COMPONENT PARTS

Here is the recommended field parts to stock to support the HP 3563A. Order one of each part.

| HP Part<br>Number                                                                                    | Assembly<br>  Where Used                                                                                         | Description                                                                                      |
|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 0490-1403<br>0699-1168<br>1820-2923<br>1826-0109<br>1826-0528<br>1826-0715<br>1826-1040<br>1853-0036 | A33, A30<br>  A18<br>  A02<br>  A32<br>  A32<br>  A30, A32, A33<br>  A18<br>  A01, A02, A15,  <br>  A18<br>  A18 | Read Relay R-FUSE 3.9K IC IC OPAMP IC OPAMP IC OPAMP IC TREG PNP Transistor Power FET Fuse 3 AMP |
| 2110-0056                                                                                            |                                                                                                                  | Fuse 6 AMP                                                                                       |

#### 3.3 TOOL/INVENTORY PACKAGES

#### RECOMMENDED TEST EQUIPMENT

The equipment required to maintain 3563A is listed in table B. Other equipment may be substituted for the recommended model if it meets or exceeds the listed critical specifications. When substitutions are made, the user may have to modify the performance and adjustment procedures to accommodate the different operating characteristics.

Table B Recommended Test Equipment

| Instrument                        | Critical Specifications                                                                                                                                                                                       | Recommended  <br>  Model                                                   | Use*             |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------|
| AC  <br>Calibrator                | 10 Hz to 100 kHz; 1 mV to 10V Amplitude Accuracy: +1% Phase Locking Capability                                                                                                                                | Fluke 5200A  <br>  Alternative:                                            | P,0              |
| Frequency   Synthesizer   (2)     | Frequency Range: 10 Hz to 1 MHz Frequency Accuracy: 10 ppm Amplitude Range: 40 Vp-p Amplitude Accuracy: <= 0.2 dB from 1 Hz to 100 kHz 1 dB from 100 kHz to 1 MHz Dynamic Range: <= -80 dBc, 10 Hz to 100 kHz | HP 3326A   Opt 002                                                         | P,0              |
| Digital  <br>Voltmeter            | 5 1/2 digit, Avg AC Voltage: 30 Hz to 100 kHz; 0.1 to 500V; +-0.1%; => 1 Mohm input impedance dc Voltage: 1V to 300V; +-0.1%                                                                                  | <br>  HP 3456A<br> <br>                                                    | P,T,F            |
| Low<br>Distortion  <br>Oscillator | •                                                                                                                                                                                                             | HP 339A<br>Alternative:<br>HP 3326A                                        | <br>  P<br>      |
| Oscilloscope                      | Bandwidth: >50 MHz  Two Channel; External Trigger  1 Mohm Input Impedance                                                                                                                                     | HP 54100A with<br>  HP 54003A<br>  Alternative:<br>  HP 1980B<br>  HP 1740 | A,T,F            |
| Signature<br>Analyzer             | Maximum Clock: >25 MHz<br>Clock Set up Time: <20 ns                                                                                                                                                           | HP 5006A<br>  Alternative:<br>  HP 5005A/B                                 | <br>  T<br>      |
|                                   | Voltage Range: 80 to 120 Vac<br>Frequency Range: 60 Hz<br>Voltage Accuracy: +-2%                                                                                                                              | ***                                                                        | <br>  T<br> <br> |

| Voltage Range: +15 to -15 Vdc, 0 to<br>  +6 Vdc<br>  Power: 13 watts                                                                                                                                                                                                                                                                                                                                                                                                        | HP 6235A  Alternative: HP 6236A/B                     | <br>  T<br> <br>            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------|
| Frequency Range: 0 Hz to 100 MHz<br>  External Frequency Standard Input:<br>  10 MHz<br>  10 MHz                                                                                                                                                                                                                                                                                                                                                                            | HP 5335A<br>  Alternative:<br>  HP 5328B<br>  Opt 010 | A                           |
| TTL/CMOS<br>  Maximum Clock: >25 MHz<br>                                                                                                                                                                                                                                                                                                                                                                                                                                    | HP 545A<br>Alternative:<br>HP 5006A<br>HP 5005A/B     | F,T                         |
| Digital Extender Brd (HP 03562-66540)   (2) Analog Extender Brd   (HP 03562-66541)   (2) Input/Analog Ext Brds   (HP 03562-66542)   Common Mode Cable (HP 03562-61620)   (2) Input Extender Cable   (HP 03562-61621)   SMB to BNC adapter cable   (HP 03585-61616)   Test Board (HP 03563-66540)   Capacitive Load (HP 35660-64401)   (3) 16-bit input probe pod   (HP 03563-61605)   (3) 8-bit output probe cables   (HP 03563-61604)   Grabbers (HP 5959-0288, pkg of 20) | HP 03563-84401                                        | P,A,O,<br>F,T               |
| 16-bit input probe cable                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HP 01650-61607                                        | P,F,T                       |
| Pattern generator probe lead set                                                                                                                                                                                                                                                                                                                                                                                                                                            | HP 10347A                                             | P,F,T                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Frequency Range: 0 Hz to 100 MHz                      | ## HP Vdc   Power: 13 watts |

£

| Feedthrough<br>Terminations<br>(2)<br>(1)    | 50 ohm: +-2% at dc 600 ohm: +-2% at dc                                                        | HP 11048C Alternative: Pomona Elect. Model 4119-50 HP 10100C HP 11095A Alternative: Pomona Elect. Model 4119-600 | P,0       |
|----------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------|
| Cables (2) (2) (1) (2)                       | BNC to BNC: length <=30 cm BNC/BNC Cable 122 cm BNC/Dual Banana Single Banana/Single Banana   | <br>  HP 8120-1838<br>  HP 8120-1840<br>  HP 11001-60001<br>  Pamona Elect.<br>  Model 2948-24-0                 | P,0       |
| <br>  Clips<br>  (2)                         | Alligator Clip                                                                                | <br>  Pamona Elect.<br>  Model 1613-8-0                                                                          |           |
| Adapters<br>  (1)<br>  (2)<br>  (2)<br>  (1) | BNC (m) to Dual Banana (f)  BNC (f) to Dual Banana (m)  BNC Tee (m)(f)(f)  BNC (f) to BNC (f) | Pomona Elect.<br>  Model 1296<br>  HP 1251-2277<br>  HP 1250-0781<br>  HP 1250-0080                              | P,0       |
| Resistors   (2)     (1)                      | Value 1 kohm<br>  Accuracy: 1%<br>  Power: 0.25W<br> <br>  Value: 100 kohm                    | HP 0757-0280<br>                                                                                                 | P         |
| (1)<br> <br> <br>                            | Value: 100 konm<br>  Accuracy: 1%<br>  Power: 0.25W                                           | nr                                                                                                               | <br> <br> |

P = Performance Tests, A = Adjustments, O = Operational Verification,
 F = Fault Isolation, T = Troubleshooting

<sup>\*\*</sup> May not meet MIL 45662A Standard

<sup>\*\*\*</sup> No specific model number is recommended, any variable AC power supply which meets the listed critical specifications may be used.

<sup>\*\*</sup> No specific model number is recommended, any variable AC power supply which meets the listed critical specifications may be used.

#### 3.4 MATERIAL ALLOCATION PLAN

Stocking recommendations are determined initially by service engineering. Modifications to these recommendations are made by SMO based on fluctuations in inventory levels.

#### 3.5 KIT PACKAGING

Special packaging requirements will be included with any return to factory requests.

#### 4.0 TRAINING

HP Bench Technicians who have attended the HP 3562A Service Training (BEI3-3562A) do not need additional training to fix the HP 3563A. The BEI3-3562A class will be given if there is sufficient demand.

### 5.0 DOCUMENTATION

#### 5.1 SERVICE DOCUMENTATION

HP 3563A Service Manual:

Manual Part No: 03563-90006 Microfiche Part No: 03563-90206

The service manual provides all the information required by service personnel to test, adjust, and service the 3563A Control Systems Analyzer. The service manual is available through DMK.

## 5.2 USER DOCUMENTATION

Operating manual:

Manual Part No: 03563-90000 (includes Installation Guide)

Microfiche Part No: 03563-90200

Installation Guide:

Manual Part No: 03563-90007 Microfiche Part No: 03563-90207

Note: Performance Tests are included in this manual.

Getting Started:

Manual Part No: 03563-90001, includes the following:

Getting Started:

Manual Part No: 03563-90002 Microfiche Part No: 03563-90202 Control System Development Using Dynamic Signal Analyzers

Manual Part No: 03563-90003 Microfiche Part No: 03563-90203

Z-Plane and Mixed-Domain Fundamentals

Manual Part No: 03563-90004 Microfiche Part No: 03563-90204

## Programming Reference:

Manual Part No: 03563-90005 Microfiche Part No: 03563-90205

The user documentation will be available through DMK by first customer shipment date.